Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Phys Rev Lett ; 133(9): 096302, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39270171

RESUMEN

The quantum Hall (QH) effect is one of the most widely studied physical phenomenon in two dimensions. The plateau-plateau transition within this effect can be comprehensively described by the scaling theory, which encompasses three pivotal exponents: the critical exponent κ, the inelastic scattering exponent p, and the universal exponent γ. Prior studies have focused on measuring κ and estimating γ, assuming a constant p value of 2 across magnetic fields. Here, our work marks a significant advancement by measuring all three exponents within a single graphene device and a conventional two-dimensional electron system. This study uniquely determines p at low magnetic fields (weak localization region and well outside the QH regime) and high magnetic fields (in the vicinity of the QH regime). Employing a comprehensive analytical approach that includes weak localization, plateau-plateau transitions, and variable range hopping, we have directly determined κ, p, and γ. Our findings reveal a distinct variation in p, shifting from 1 in the low magnetic field regime to 2 in the QH regime in graphene.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39381778

RESUMEN

This paper describes the characterization of the quantum anomalous Hall (QAH) effect resistor with Chromium-doped Bismuth Antimony Telluride with the efforts in coupling directly to a programmable Josephson voltage standard (PJVS) at zero magnetic field. The precision measurement of the QAH resistance was performed under the presence of microwave signal biased to the PJVS. Understanding such effect will help to improve the experimental set-up for integrating multiple quantum electrical standards in a single system.

3.
Carbon N Y ; 1842021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37200678

RESUMEN

Due to weak light-matter interaction, standard chemical vapor deposition (CVD)/exfoliated single-layer graphene-based photodetectors show low photoresponsivity (on the order of mA/W). However, epitaxial graphene (EG) offers a more viable approach for obtaining devices with good photoresponsivity. EG on 4H-SiC also hosts an interfacial buffer layer (IBL), which is the source of electron carriers applicable to quantum optoelectronic devices. We utilize these properties to demonstrate a gate-free, planar EG/4H-SiC-based device that enables us to observe the positive photoresponse for (405-532) nm and negative photoresponse for (632-980) nm laser excitation. The broadband binary photoresponse mainly originates from the energy band alignment of the IBL/EG interface and the highly sensitive work function of the EG. We find that the photoresponsivity of the device is > 10 A/W under 405 nm of power density 7.96 mW/cm2 at 1 V applied bias, which is three orders of magnitude greater than the obtained values of CVD/exfoliated graphene and higher than the required value for practical applications. These results path the way for selective light-triggered logic devices based on EG and can open a new window for broadband photodetection.

4.
IEEE Trans Electron Devices ; 68(7)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36452065

RESUMEN

A new type of graphene-based quantum Hall standards is tested for electrical quantum metrology applications at alternating current (ac) and direct current (dc). The devices are functionalized with Cr(CO)3 to control the charge carrier density and have branched Hall contacts based on NbTiN superconducting material. The work is an in-depth study about the characteristic capacitances and related losses in the ac regime of the devices and about their performance during precision resistance measurements at dc and ac.

5.
J Phys D Appl Phys ; 53(34)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33071355

RESUMEN

Measurements of fractional multiples of the ν = 2 plateau quantized Hall resistance (R H ≈ 12906 Ω) were enabled by the utilization of multiple current terminals on millimetre-scale graphene p-n junction devices fabricated with interfaces along both lateral directions. These quantum Hall resistance checkerboard devices have been demonstrated to match quantized resistance outputs numerically calculated with the LTspice circuit simulator. From the devices' functionality, more complex embodiments of the quantum Hall resistance checkerboard were simulated to highlight the parameter space within which these devices could operate. Moreover, these measurements suggest that the scalability of p-n junction fabrication on millimetre or centimetre scales is feasible with regards to graphene device manufacturing by using the far more efficient process of standard ultraviolet lithography.

6.
J Phys D Appl Phys ; 53(27)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32831402

RESUMEN

Just a few of the promising applications of graphene Corbino pnJ devices include two-dimensional Dirac fermion microscopes, custom programmable quantized resistors, and mesoscopic valley filters. In some cases, device scalability is crucial, as seen in fields like resistance metrology, where graphene devices are required to accommodate currents of the order 100 µA to be compatible with existing infrastructure. However, fabrication of these devices still poses many difficulties. In this work, unusual quantized resistances are observed in epitaxial graphene Corbino p-n junction devices held at the ν = 2 plateau (R H ≈ 12906 Ω) and agree with numerical simulations performed with the LTspice circuit simulator. The formulae describing experimental and simulated data are empirically derived for generalized placement of up to three current terminals and accurately reflects observed partial edge channel cancellation. These results support the use of ultraviolet lithography as a way to scale up graphene-based devices with suitably narrow junctions that could be applied in a variety of subfields.

7.
J Res Natl Inst Stand Technol ; 125: 125012, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35465390

RESUMEN

Calibration services for resistance metrology have continued to advance their capabilities and establish new and improved methods for maintaining standard resistors. Despite the high quality of these methods, there still exist inherent limitations to the number of simultaneous, measurable resistors and the temperature stability of their air environment. In that context, we report progress on the design, development, and initial testing of a precise temperature-control chamber for standard resistors that can provide a constant-temperature environment with a stability of ± 6 m°C. Achieving this stability involved customizing the chamber design based on air-flow simulations. Moreover, microprocessor programming allowed the air flow to be optimized within an unsealed chamber configuration to reduce chamber temperature recovery times. Further tests were conducted to improve the stability of the control system and the efficiency of the chamber.

8.
Metrologia ; 57(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32127725

RESUMEN

The unique properties of the quantum Hall effect allow one to revisit traditional measurement circuits with a new flavour. In this paper we present the first realization of a quantum Hall Kelvin bridge for the calibration of standard resistors directly against the quantum Hall resistance. The bridge design is particularly simple and requires a minimal number of instruments. The implementation here proposed is based on the bridge-on-a-chip, an integrated circuit composed of three graphene quantum Hall elements and superconducting wiring. The accuracy achieved in the calibration of a 12 906Ω standard resistor is of a few parts in 108, at present mainly limited by the prototype device and the interferences in the current implementation, with the potential to achieve few parts in 109, which is the level of the systematic uncertainty of the quantum Hall Kelvin bridge itself.

9.
Artículo en Inglés | MEDLINE | ID: mdl-32863578

RESUMEN

A mathematical approach is introduced for predicting quantized resistances in graphene p-n junction devices that utilize more than a single entry and exit point for electron flow. Depending on the configuration of an arbitrary number of terminals, electrical measurements yield nonconventional, fractional multiples of the typical quantized Hall resistance at the v = 2 plateau (R H ≈ 12906 Ω) and take the form: a b R H . This theoretical formulation is independent of material, and applications to other material systems that exhibit quantum Hall behaviors are to be expected. Furthermore, this formulation is supported with experimental data from graphene devices with multiple source and drain terminals.

10.
Artículo en Inglés | MEDLINE | ID: mdl-33335332

RESUMEN

This work presents one solution for long-term storage of epitaxial graphene (EG) in air, namely through the functionalization of millimeter-scale devices with chromium tricarbonyl - Cr(CO)3. The carrier density may be tuned reproducibly by annealing below 400 K due to the presence of Cr(CO)3. All tuning is easily reversible with exposure to air, with the idle, in-air, carrier density always being close to the Dirac point. Precision measurements in the quantum Hall regime indicate no detrimental effects from the treatment, validating the pursuit of developing air-stable EG-based QHR devices.

11.
IEEE Trans Instrum Meas ; 1.633481E62020.
Artículo en Inglés | MEDLINE | ID: mdl-33335333

RESUMEN

Precision quantum Hall resistance measurements can be greatly improved when implementing new electrical contact geometries made from superconducting NbTiN. The sample designs described here minimize undesired resistances at contacts and interconnections, enabling further enhancement of device size and complexity when pursuing next-generation quantized Hall resistance devices.

12.
IEEE Trans Instrum Meas ; 69: 9374-9380, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33335334

RESUMEN

A graphene quantized Hall resistance (QHR) device fabricated at the National Institute of Standards and Technology (NIST) was measured alongside a GaAs QHR device fabricated by the National Research Council of Canada (NRC) by comparing them to a 1 kΩ standard resistor using a cryogenic current comparator. The two devices were mounted in a custom developed dual probe that was then assessed for its viability as a suitable apparatus for precision measurements. The charge carrier density of the graphene device exhibited controllable tunability when annealed after Cr(CO)3 functionalization. These initial measurement results suggest that making resistance comparisons is possible with a single probe wired for two types of quantum standards - GaAs, the established material, and graphene, the newer material that may promote the development of more user-friendly equipment.

13.
Carbon N Y ; 1542019.
Artículo en Inglés | MEDLINE | ID: mdl-32165760

RESUMEN

We have demonstrated the millimeter-scale fabrication of monolayer epitaxial graphene p-n junction devices using simple ultraviolet photolithography, thereby significantly reducing device processing time compared to that of electron beam lithography typically used for obtaining sharp junctions. This work presents measurements yielding nonconventional, fractional multiples of the typical quantized Hall resistance at ν = 2 (R H ≈ 12906 Ω) that take the form: a b R H . Here, a and b have been observed to take on values such 1, 2, 3, and 5 to form various coefficients of R H. Additionally, we provide a framework for exploring future device configurations using the LTspice circuit simulator as a guide to understand the abundance of available fractions one may be able to measure. These results support the potential for drastically simplifying device processing time and may be used for many other two-dimensional materials.

14.
Carbon N Y ; 1422019.
Artículo en Inglés | MEDLINE | ID: mdl-31097837

RESUMEN

Monolayer epitaxial graphene (EG) has been shown to have clearly superior properties for the development of quantized Hall resistance (QHR) standards. One major difficulty with QHR devices based on EG is that their electrical properties drift slowly over time if the device is stored in air due to adsorption of atmospheric molecular dopants. The crucial parameter for device stability is the charge carrier density, which helps determine the magnetic flux density required for precise QHR measurements. This work presents one solution to this problem of instability in air by functionalizing the surface of EG devices with chromium tricarbonyl -Cr(CO)3. Observations of carrier density stability in air over the course of one year are reported, as well as the ability to tune the carrier density by annealing the devices. For low temperature annealing, the presence of Cr(CO)3 stabilizes the electrical properties and allows for the reversible tuning of the carrier density in millimeter-scale graphene devices close to the Dirac point. Precision measurements in the quantum Hall regime show no detrimental effect on the carrier mobility.

15.
Artículo en Inglés | MEDLINE | ID: mdl-32116346

RESUMEN

In this paper, we show that quantum Hall resistance measurements using two terminals may be as precise as four-terminal measurements when applying superconducting split contacts. The described sample designs eliminate resistance contributions of terminals and contacts such that the size and complexity of next-generation quantized Hall resistance devices can be significantly improved.

16.
Artículo en Inglés | MEDLINE | ID: mdl-34877178

RESUMEN

The growth of transition metal dichalcogenide (TMDC) alloys provides an opportunity to experimentally access information elucidating how optical properties change with gradual substitutions in the lattice compared with their pure compositions. In this work, we performed growths of alloyed crystals with stoichiometric compositions between pure forms of NbSe2 and WSe2, followed by an optical analysis of those alloys by utilizing Raman spectroscopy and spectroscopic ellipsometry.

17.
Metrologia ; 56(6)2019.
Artículo en Inglés | MEDLINE | ID: mdl-32116392

RESUMEN

This work presents precision measurements of quantized Hall array resistance devices using superconducting, crossover-free, multiple interconnections as well as graphene split contacts. These new techniques successfully eliminate the accumulation of internal resistances and leakage currents that typically occur at interconnections and crossing leads between interconnected devices. As a result, a scalable quantized Hall resistance array is obtained with a nominal value that is as precise and stable as that from single-element quantized Hall resistance standards.

18.
Nano Lett ; 18(10): 6135-6143, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30096239

RESUMEN

Layered transition metal dichalcogenides exhibit the emergence of a direct bandgap at the monolayer limit along with pronounced excitonic effects. In these materials, interaction with phonons is the dominant mechanism that limits the exciton coherence lifetime. Exciton-phonon interaction also facilitates energy and momentum relaxation, and influences exciton diffusion under most experimental conditions. However, the fundamental changes in the exciton-phonon interaction are not well understood as the material undergoes the transition from a direct to an indirect bandgap semiconductor. Here, we address this question through optical spectroscopy and microscopic theory. In the experiment, we study room-temperature statistics of the exciton line width for a large number of mono- and bilayer WS2 samples. We observe a systematic increase in the room-temperature line width of the bilayer compared to the monolayer of 50 meV, corresponding to an additional scattering rate of ∼0.1 fs-1. We further address both phonon emission and absorption processes by examining the temperature dependence of the width of the exciton resonances. Using a theoretical approach based on many-body formalism, we are able to explain the experimental results and establish a microscopic framework for exciton-phonon interactions that can be applied to naturally occurring and artificially prepared multilayer structures.

19.
Artículo en Inglés | MEDLINE | ID: mdl-32116348

RESUMEN

Capabilities for high resistance determinations are essential for calibration of currents below 1 pA, as typically requested in several applications, including semiconductor device characterization, single electron transport, and ion beam technologies. This need to calibrate low currents warrants the expansion of accessible values of high resistance. We present several methods for measuring resistances on the PΩ scale, namely potentiometry, dual source bridge measurements, and teraohmmeter usage, all of which are subsequently compared to theoretical calculations. These methods were used to measure four 1 PΩ resistances, one 10 PΩ resistance, and one 100 PΩ resistance, all generated by wye-delta networks containing three resistance elements. The differences between the experimentally obtained values and the theoretical values typically agree within 1 % for 1 PΩ, 10 PΩ and 100 PΩ resistances and the measurement uncertainties for the three techniques were estimated to be between 0.4 % to 4.8 % for 1 PΩ, 2.8 % to 5.6 % for 10 PΩ, and 4.4 % to 10.2 % for 100 PΩ.

20.
Artículo en Inglés | MEDLINE | ID: mdl-32116347

RESUMEN

Several graphene quantized Hall resistance (QHR) devices manufactured at the National Institute of Standards and Technology (NIST) were compared to GaAs QHR devices and a 100 Ω standard resistor at the National Institute for Advanced Industrial Science and Technology (AIST). Measurements of the 100 Ω resistor with the graphene QHR devices agreed within 5 nΩ/Ω of the values for the 100 Ω resistor obtained through GaAs measurements. The electron density of the graphene devices was adjusted at AIST to restore device properties such that operation was possible at low magnetic flux densities of 4 T to 6 T. This adjustment was accomplished with a functionalization method utilized at NIST, allowing for consistent tunability of the graphene QHR devices with simple annealing. Such a method replaces older and less predictable methods for adjusting graphene for metrological suitability. The milestone results demonstrate the ease with which graphene can be used to make resistance comparison measurements among many National Metrology Institutes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA