Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 117(6): 1781-1785, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37873939

RESUMEN

Plants and ecosystems worldwide are exposed to a wide range of chemical, physical, and biological factors of global change, many of which act concurrently. As bringing order to the array of factors is required in order to generate an enhanced understanding of simultaneous impacts, classification schemes have been developed. One such classification scheme is dedicated to capturing the different targets of global change factors along the ecological hierarchy. We build on this pioneering work, and refine the conceptual framework in several ways, focusing on plants and terrestrial systems: (i) we more strictly define the target level of the hierarchy, such that every factor typically has just one target level, and not many; (ii) we include effects above the level of the community, that is, there are effects also at the ecosystem scale that cannot be reduced to any level below this; (iii) we introduce the level of the landscape to capture certain land use change effects while abandoning the level below the individual. We discuss how effects can propagate along the levels of the ecological hierarchy, upwards and downwards, presenting opportunities for explaining non-additivity of effects of multiple factors. We hope that this updated conceptual framework will help inform the next generation of plant-focused global change experiments, specifically aimed at non-additivity of effects at the confluence of many factors.


Asunto(s)
Ecosistema
2.
Ecol Lett ; 27(3): e14397, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38430051

RESUMEN

Generative artificial intelligence (AI) models will have broad impacts on society including the scientific enterprise; ecology and environmental science will be no exception. Here, we discuss the potential opportunities and risks of advanced generative AI for visual material (images and video) for the science of ecology and the environment itself. There are clearly opportunities for positive impacts, related to improved communication, for example; we also see possibilities for ecological research to benefit from generative AI (e.g., image gap filling, biodiversity surveys, and improved citizen science). However, there are also risks, threatening to undermine the credibility of our science, mostly related to actions of bad actors, for example in terms of spreading fake information or committing fraud. Risks need to be mitigated at the level of government regulatory measures, but we also highlight what can be done right now, including discussing issues with the next generation of ecologists and transforming towards radically open science workflows.


Asunto(s)
Inteligencia Artificial , Biodiversidad
3.
Environ Microbiol ; 26(7): e16673, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39001572

RESUMEN

Protists, a crucial part of the soil food web, are increasingly acknowledged as significant influencers of nutrient cycling and plant performance in farmlands. While topographical and climatic factors are often considered to drive microbial communities on a continental scale, higher trophic levels like heterotrophic protists also rely on their food sources. In this context, bacterivores have received more attention than fungivores. Our study explored the connection between the community composition of protists (specifically Rhizaria and Cercozoa) and fungi across 156 cereal fields in Europe, spanning a latitudinal gradient of 3000 km. We employed a machine-learning approach to measure the significance of fungal communities in comparison to bacterial communities, soil abiotic factors, and climate as determinants of the Cercozoa community composition. Our findings indicate that climatic variables and fungal communities are the primary drivers of cercozoan communities, accounting for 70% of their community composition. Structural equation modelling (SEM) unveiled indirect climatic effects on the cercozoan communities through a change in the composition of the fungal communities. Our data also imply that fungivory might be more prevalent among protists than generally believed. This study uncovers a hidden facet of the soil food web, suggesting that the benefits of microbial diversity could be more effectively integrated into sustainable agriculture practices.


Asunto(s)
Grano Comestible , Hongos , Microbiología del Suelo , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Europa (Continente) , Grano Comestible/microbiología , Suelo/química , Cercozoos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Cadena Alimentaria , Microbiota , Biodiversidad , Micobioma , Agricultura
4.
New Phytol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39229862

RESUMEN

Knowledge of differential life-history strategies in arbuscular mycorrhizal (AM) fungi is relevant for understanding the ecology of this group and its potential role in sustainable agriculture and carbon sequestration. At present, AM fungal life-history theories often focus on differential investment into intra- vs extraradical structures among AM fungal taxa, and its implications for plant benefits. With this Viewpoint we aim to expand these theories by integrating a mycocentric economics- and resource-based life-history framework. As in plants, AM fungal carbon and nutrient demands are stoichiometrically coupled, though uptake of these elements is spatially decoupled. Consequently, investment in morphological structures for carbon vs nutrient uptake is not in competition. We argue that understanding the ecology and evolution of AM fungal life-history trade-offs requires increased focus on variation among structures foraging for the same element, that is within intra- or extraradical structures (in our view a 'horizontal' axis), not just between them ('vertical' axis). Here, we elaborate on this argument and propose a range of plausible life-history trade-offs that could lead to the evolution of strategies in AM fungi, providing testable hypotheses and creating opportunities to explain AM fungal co-existence, and the context-dependent effects of AM fungi on plant growth and soil carbon dynamics.

5.
Glob Chang Biol ; 30(7): e17409, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38978455

RESUMEN

Although positive effects of arbuscular mycorrhizal (AM) fungi on plant performance under drought have been well documented, how AM fungi regulate soil functions and multifunctionality requires further investigation. In this study, we first performed a meta-analysis to test the potential role of AM fungi in maintaining soil functions under drought. Then, we conducted a greenhouse experiment, using a pair of hyphal ingrowth cores to spatially separate the growth of AM fungal hyphae and plant roots, to further investigate the effects of AM fungi on soil multifunctionality and its resistance against drought. Our meta-analysis showed that AM fungi promote multiple soil functions, including soil aggregation, microbial biomass and activities of soil enzymes related to nutrient cycling. The greenhouse experiment further demonstrated that AM fungi attenuate the negative impact of drought on these soil functions and thus multifunctionality, therefore, increasing their resistance against drought. Moreover, this buffering effect of AM fungi persists across different frequencies of water supply and plant species. These findings highlight the unique role of AM fungi in maintaining multiple soil functions by mitigating the negative impact of drought. Our study highlights the importance of AM fungi as a nature-based solution to sustaining multiple soil functions in a world where drought events are intensifying.


Asunto(s)
Sequías , Micorrizas , Microbiología del Suelo , Suelo , Micorrizas/fisiología , Suelo/química , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Biomasa
6.
Glob Chang Biol ; 30(6): e17361, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822568

RESUMEN

Our current planetary crisis, including multiple jointly acting factors of global change, moves the need for effective ecosystem restoration center stage and compels us to explore unusual options. We here propose exploring combinatorial approaches to restoration practices: management practices are drawn at random and combined from a locally relevant pool of possible management interventions, thus creating an experimental gradient in the number of interventions. This will move the current degree of interventions to higher dimensionality, opening new opportunities for unlocking unknown synergistic effects. Thus, the high dimensionality of global change (multiple jointly acting factors) would be more effectively countered by similar high-dimensionality in solutions. In this concept, regional restoration hubs play an important role as guardians of locally relevant information and sites of experimental exploration. Data collected from such studies could feed into a global database, which could be used to learn about general principles of combined restoration practices, helping to refine future experiments. Such combinatorial approaches to exploring restoration intervention options may be our best hope yet to achieve decisive progress in ecological restoration at the timescale needed to mitigate and reverse the most severe losses caused by global environmental change.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Conservación de los Recursos Naturales/métodos , Restauración y Remediación Ambiental/métodos , Ecología/métodos , Cambio Climático
7.
Glob Chang Biol ; 30(7): e17419, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023004

RESUMEN

Antibiotic resistance genes (ARGs) have moved into focus as a critically important response variable in global change biology, given the increasing environmental and human health threat posed by these genes. However, we propose that elevated levels of ARGs should also be considered a factor of global change, not just a response. We provide evidence that elevated levels of ARGs are a global change factor, since this phenomenon is linked to human activity, occurs globally, and affects biota. We explain why ARGs could be considered the global change factor, rather than the organisms containing them; and we highlight the difference between ARGs and the presence of antibiotics, which are not necessarily linked since elevated levels of ARGs are caused by multiple factors. Importantly, shifting the perspective to elevated levels of ARGs as a factor of global change opens new avenues of research, where ARGs can be the experimental treatment. This includes asking questions about how elevated ARG levels interact with other global change factors, or how ARGs influence ecosystem processes, biodiversity or trophic relationships. Global change biology stands to profit from this new framing in terms of capturing more completely the real extent of human impacts on this planet.


Asunto(s)
Farmacorresistencia Microbiana , Humanos , Farmacorresistencia Microbiana/genética , Antibacterianos/farmacología , Cambio Climático , Ecosistema , Actividades Humanas
8.
Glob Chang Biol ; 30(7): e17438, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39054882

RESUMEN

Plants and their symbionts, such as arbuscular mycorrhizal (AM) fungi, are increasingly subjected to various environmental stressors due to climate change, including drought. As a response to drought, plants generally allocate more biomass to roots over shoots, thereby facilitating water uptake. However, whether this biomass allocation shift is modulated by AM fungi remains unknown. Based on 5691 paired observations from 154 plant species, we conducted a meta-analysis to evaluate how AM fungi modulate the responses of plant growth and biomass allocation (e.g., root-to-shoot ratio, R/S) to drought. We found that AM fungi attenuate the negative impact of drought on plant growth, including biomass production, photosynthetic performance and resource (e.g. nutrient and water) uptake. Accordingly, drought significantly increased R/S in non-inoculated plants, but not in plants symbiotic with established AM fungal symbioses. These results suggest that AM fungi promote plant growth and stabilize their R/S through facilitating nutrient and water uptake in plants under drought. Our findings highlight the crucial role of AM fungi in enhancing plant resilience to drought by optimizing resource allocation. This knowledge opens avenues for sustainable agricultural practices that leverage symbiotic relationships for climate adaptation.


Asunto(s)
Biomasa , Sequías , Micorrizas , Desarrollo de la Planta , Simbiosis , Micorrizas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Cambio Climático , Fotosíntesis , Agua/metabolismo
9.
Glob Chang Biol ; 30(7): e17415, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39005227

RESUMEN

Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.


Asunto(s)
Microplásticos , Microbiología del Suelo , Microplásticos/análisis , Suelo/química , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Contaminantes del Suelo/análisis , Microbiota/efectos de los fármacos , Biomasa , Carbono/análisis , Carbono/metabolismo
10.
PLoS Biol ; 19(3): e3001130, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33784293

RESUMEN

Microplastics (MPs), plastic particles <5 mm, are found in environments, including terrestrial ecosystems, planetwide. Most research so far has focused on ecotoxicology, examining effects on performance of soil biota in controlled settings. As research pivots to a more ecosystem and global change perspective, questions about soil-borne biogeochemical cycles become important. MPs can affect the carbon cycle in numerous ways, for example, by being carbon themselves and by influencing soil microbial processes, plant growth, or litter decomposition. Great uncertainty surrounds nano-sized plastic particles, an expected by-product of further fragmentation of MPs. A major concerted effort is required to understand the pervasive effects of MPs on the functioning of soils and terrestrial ecosystems; importantly, such research needs to capture the immense diversity of these particles in terms of chemistry, aging, size, and shape.


Asunto(s)
Ciclo del Carbono/efectos de los fármacos , Microplásticos/análisis , Microplásticos/toxicidad , Suelo/química , Carbono/metabolismo , Ecosistema , Microbiología del Suelo
11.
Environ Sci Technol ; 58(1): 231-241, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38128904

RESUMEN

Despite the extensive global consumption of architectural paint, the toxicological effects of aged exterior paint particles on terrestrial biota remain largely uncharacterized. Herein, we assessed the toxic effect of aged paint particles on soil environments using the nematode Caenorhabditis elegans (C. elegans) as a test organism. Various types of paint particles were generated by fragmentation and sequential sieving (500-1000, 250-500, 100-250, 50-100, 20-50 µm) of paint coatings collected from two old residential areas. The paint particles exerted different levels of toxicity, as indicated by a reduction in the number of C. elegans offspring, depending on their size, color, and layer structure. These physical characteristics were found to be closely associated with the chemical heterogeneity of additives present in the paint particles. Since the paint particle sizes were larger than what C. elegans typically consume, we attributed the toxicity to leachable additives present in the paint particles. To assess the toxicity of these leachable additives, we performed sequential washings of the paint particles with distilled water and ethanol. Ethanol washing of the paint particles significantly reduced the soil toxicity of the hydrophobic additives, indicating their potential environmental risk. Liquid chromatography-mass spectrometry analysis of the ethanol leachate revealed the presence of alkyl amines, which exhibited a high correlation with the toxicity of the paint particles. Further toxicity testing using an alkyl amine standard demonstrated that a paint particle concentration of 1.2% in soil could significantly reduce the number of C. elegans offspring. Our findings provide insights into the potential hazards posed by aged paint particles and their leachable additives in the terrestrial environment.


Asunto(s)
Caenorhabditis elegans , Suelo , Animales , Suelo/química , Ecosistema , Pintura , Etanol/farmacología
12.
Environ Sci Technol ; 58(13): 5821-5831, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38416534

RESUMEN

Microplastics (MPs) contamination presents a significant global environmental challenge, with its potential to influence soil carbon (C) dynamics being a crucial aspect for understanding soil C changes and global C cycling. This meta-analysis synthesizes data from 110 peer-reviewed publications to elucidate the directional, magnitude, and driving effects of MPs exposure on soil C dynamics globally. We evaluated the impacts of MPs characteristics (including type, biodegradability, size, and concentration), soil properties (initial pH and soil organic C [SOC]), and experimental conditions (such as duration and plant presence) on various soil C components. Key findings included the significant promotion of SOC, dissolved organic C, microbial biomass C, and root biomass following MPs addition to soils, while the net photosynthetic rate was reduced. No significant effects were observed on soil respiration and shoot biomass. The study highlights that the MPs concentration, along with other MPs properties and soil attributes, critically influences soil C responses. Our results demonstrate that both the nature of MPs and the soil environment interact to shape the effects on soil C cycling, providing comprehensive insights and guiding strategies for mitigating the environmental impact of MPs.


Asunto(s)
Plásticos , Suelo , Microplásticos , Fotosíntesis , Carbono , Ecosistema
13.
Environ Sci Technol ; 58(9): 4060-4069, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38331396

RESUMEN

Microplastic pollution, an emerging pollution issue, has become a significant environmental concern globally due to its ubiquitous, persistent, complex, toxic, and ever-increasing nature. As a multifaceted and diverse suite of small plastic particles with different physicochemical properties and associated matters such as absorbed chemicals and microbes, future research on microplastics will need to comprehensively consider their multidimensional attributes. Here, we introduce a novel, conceptual framework of the "microplastome", defined as the entirety of various plastic particles (<5 mm), and their associated matters such as chemicals and microbes, found within a sample and its overall environmental and toxicological impacts. As a novel concept, this paper aims to emphasize and call for a collective quantification and characterization of microplastics and for a more holistic understanding regarding the differences, connections, and effects of microplastics in different biotic and abiotic ecosystem compartments. Deriving from this lens, we present our insights and prospective trajectories for characterization, risk assessment, and source apportionment of microplastics. We hope this new paradigm can guide and propel microplastic research toward a more holistic era and contribute to an informed strategy for combating this globally important environmental pollution issue.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/toxicidad , Ecosistema , Estudios Prospectivos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/toxicidad
14.
Nature ; 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899183
15.
Ecol Lett ; 26(12): 2087-2097, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37794719

RESUMEN

Land plants play a key role in global carbon cycling, but the potential role of arbuscular mycorrhizal fungi (AMF) in the responses of a wide range of plant species to global change factors (GCFs) remains limited. Based on 1100 paired observations from 181 plant species, we conducted a meta-analysis to test the role of AMF in plant responses to four GCFs: drought, warming, nitrogen (N) addition and elevated CO2 . We show that AMF significantly ameliorate the negative effects of drought on plant performance. The GCFs N addition and elevated CO2 significantly enhance the performance of AM plants but not of non-inoculated plants. AM plants show better performance than their non-inoculated counterparts under warming, although neither of them showed a significant response to this GCF. These results suggest that AMF benefit plants in response to GCFs. Our study highlights the importance of AMF in enhancing plant performance under ongoing global change.


Asunto(s)
Micorrizas , Dióxido de Carbono , Hongos , Plantas , Sequías , Nitrógeno
16.
Ecol Lett ; 26(9): 1523-1534, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37330626

RESUMEN

Despite host-fungal symbiotic interactions being ubiquitous in all ecosystems, understanding how symbiosis has shaped the ecology and evolution of fungal spores that are involved in dispersal and colonization of their hosts has been ignored in life-history studies. We assembled a spore morphology database covering over 26,000 species of free-living to symbiotic fungi of plants, insects and humans and found more than eight orders of variation in spore size. Evolutionary transitions in symbiotic status correlated with shifts in spore size, but the strength of this effect varied widely among phyla. Symbiotic status explained more variation than climatic variables in the current distribution of spore sizes of plant-associated fungi at a global scale while the dispersal potential of their spores is more restricted compared to free-living fungi. Our work advances life-history theory by highlighting how the interaction between symbiosis and offspring morphology shapes the reproductive and dispersal strategies among living forms.


Asunto(s)
Micorrizas , Simbiosis , Animales , Humanos , Ecosistema , Hongos , Insectos , Plantas , Esporas Fúngicas
17.
New Phytol ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737033

RESUMEN

Optimizing agroecosystems and crops for micronutrient uptake while reducing issues with inorganic contaminants (metal(loid)s) is a challenging task. One promising approach is to use arbuscular mycorrhizal fungi (AMF) and investigate the physiological, molecular and epigenetic changes that occur in their presence and that lead to changes in plant metal(loid) concentration (biofortification of micronutrients or mitigation of contaminants). Moreover, it is important to understand these mechanisms in the context of the soil microbiome, particularly those interactions of AMF with other soil microbes that can further shape crop nutrition. To address these challenges, a two-pronged approach is recommended: exploring molecular mechanisms and investigating microbiome management and engineering. Combining both approaches can lead to benefits in human health by balancing nutrition and contamination caused by metal(loid)s in the agro-ecosystem.

18.
New Phytol ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37529867

RESUMEN

Arbuscular mycorrhizal (AM) fungi play an important role in soil organic matter (SOM) formation and stabilization. Previous studies have emphasized organic compounds produced by AM fungi as persistent binding agents for aggregate formation and SOM storage. This concept overlooks the multiple biogeochemical processes mediated by AM fungal activities, which drive SOM generation, reprocessing, reorganization, and stabilization. Here, we propose an updated conceptual framework to facilitate a mechanistic understanding of the role of AM fungi in SOM dynamics. In this framework, four pathways for AM fungi-mediated SOM dynamics are included: 'Generating', AM fungal exudates and biomass serve as key sources of SOM chemodiversity; 'Reprocessing', hyphosphere microorganisms drive SOM decomposition and resynthesis; 'Reorganizing', AM fungi mediate soil physical changes and influence SOM transport, redistribution, transformation, and storage; and 'Stabilizing', AM fungi drive mineral weathering and organo-mineral interactions for SOM stabilization. Moreover, we discuss the AM fungal role in SOM dynamics at different scales, especially when translating results from small scales to complex larger scales. We believe that working with this conceptual framework can allow a better understanding of AM fungal role in SOM dynamics, therefore facilitating the development of mycorrhiza-based technologies toward soil health and global change mitigation.

19.
New Phytol ; 237(1): 279-294, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36177721

RESUMEN

Nitrogen (N) enrichment poses threats to biodiversity and ecosystem stability, while arbuscular mycorrhizal (AM) fungi play important roles in ecosystem stability and functioning. However, the ecological impacts, especially thresholds of N enrichment potentially causing AM fungal community shifts have not been adequately characterized. Based on a long-term field experiment with nine N addition levels ranging from 0 to 50 g N m-2 yr-1 in a temperate grassland, we characterized the community response patterns of AM fungi to N enrichment. Arbuscular mycorrhizal fungal biomass continuously decreased with increasing N addition levels. However, AM fungal diversity did not significantly change below 20 g N m-2 yr-1 , but dramatically decreased at higher N levels, which drove the AM fungal community to a potentially unstable state. Structural equation modeling showed that the decline in AM fungal biomass could be well explained by soil acidification, whereas key driving factors for AM fungal diversity shifted from soil nitrogen : phosphorus (N : P) ratio to soil pH with increasing N levels. Different aspects of AM fungal communities (biomass, diversity and community composition) respond differently to increasing N addition levels. Thresholds for substantial community shifts in response to N enrichment in this grassland ecosystem are identified.


Asunto(s)
Micobioma , Micorrizas , Micorrizas/fisiología , Nitrógeno , Ecosistema , Pradera , Microbiología del Suelo , Suelo/química , China
20.
Glob Chang Biol ; 29(7): 1971-1983, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36607159

RESUMEN

Nitrogen (N) availability has been considered as a critical factor for the cycling and storage of soil organic carbon (SOC), but effects of N enrichment on the SOC pool appear highly variable. Given the complex nature of the SOC pool, recent frameworks suggest that separating this pool into different functional components, for example, particulate organic carbon (POC) and mineral-associated organic carbon (MAOC), is of great importance for understanding and predicting SOC dynamics. Importantly, little is known about how these N-induced changes in SOC components (e.g., changes in the ratios among these fractions) would affect the functionality of the SOC pool, given the differences in nutrient density, resistance to disturbance, and turnover time between POC and MAOC pool. Here, we conducted a global meta-analysis of 803 paired observations from 98 published studies to assess the effect of N addition on these SOC components, and the ratios among these fractions. We found that N addition, on average, significantly increased POC and MAOC pools by 16.4% and 3.7%, respectively. In contrast, both the ratios of MAOC to SOC and MAOC to POC were remarkably decreased by N enrichment (4.1% and 10.1%, respectively). Increases in the POC pool were positively correlated with changes in aboveground plant biomass and with hydrolytic enzymes. However, the positive responses of MAOC to N enrichment were correlated with increases in microbial biomass. Our results suggest that although reactive N deposition could facilitate soil C sequestration to some extent, it might decrease the nutrient density, turnover time, and resistance to disturbance of the SOC pool. Our study provides mechanistic insights into the effects of N enrichment on the SOC pool and its functionality at global scale, which is pivotal for understanding soil C dynamics especially in future scenarios with more frequent and severe perturbations.


Asunto(s)
Carbono , Suelo , Nitrógeno/análisis , Biomasa , Plantas , Minerales , Polvo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA