Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell Mol Life Sci ; 80(7): 181, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37329342

RESUMEN

Ependymal cells lining the central canal of the spinal cord play a crucial role in providing a physical barrier and in the circulation of cerebrospinal fluid. These cells express the FOXJ1 and SOX2 transcription factors in mice and are derived from various neural tube populations, including embryonic roof and floor plate cells. They exhibit a dorsal-ventral expression pattern of spinal cord developmental transcription factors (such as MSX1, PAX6, ARX, and FOXA2), resembling an embryonic-like organization. Although this ependymal region is present in young humans, it appears to be lost with age. To re-examine this issue, we collected 17 fresh spinal cords from organ donors aged 37-83 years and performed immunohistochemistry on lightly fixed tissues. We observed cells expressing FOXJ1 in the central region in all cases, which co-expressed SOX2 and PAX6 as well as RFX2 and ARL13B, two proteins involved in ciliogenesis and cilia-mediated sonic hedgehog signaling, respectively. Half of the cases exhibited a lumen and some presented portions of the spinal cord with closed and open central canals. Co-staining of FOXJ1 with other neurodevelopmental transcription factors (ARX, FOXA2, MSX1) and NESTIN revealed heterogeneity of the ependymal cells. Interestingly, three donors aged > 75 years exhibited a fetal-like regionalization of neurodevelopmental transcription factors, with dorsal and ventral ependymal cells expressing MSX1, ARX, and FOXA2. These results provide new evidence for the persistence of ependymal cells expressing neurodevelopmental genes throughout human life and highlight the importance of further investigation of these cells.


Asunto(s)
Proteínas Hedgehog , Médula Espinal , Humanos , Ratones , Animales , Proteínas Hedgehog/genética , Médula Espinal/metabolismo , Neuroglía/metabolismo , Factores de Transcripción/metabolismo , Epéndimo/metabolismo , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo
2.
Mol Ther ; 27(6): 1101-1113, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31005598

RESUMEN

Most cases of sensorineural deafness are caused by degeneration of hair cells. Although stem/progenitor cell therapy is becoming a promising treatment strategy in a variety of organ systems, cell engraftment in the adult mammalian cochlea has not yet been demonstrated. In this study, we generated human otic progenitor cells (hOPCs) from induced pluripotent stem cells (iPSCs) in vitro and identified these cells by the expression of known otic markers. We showed successful cell transplantation of iPSC-derived-hOPCs in an in vivo adult guinea pig model of ototoxicity. The delivered hOPCs migrated throughout the cochlea, engrafted in non-sensory regions, and survived up to 4 weeks post-transplantation. Some of the engrafted hOPCs responded to environmental cues within the cochlear sensory epithelium and displayed molecular features of early sensory differentiation. We confirmed these results with hair cell progenitors derived from Atoh1-GFP mice as donor cells. These mouse otic progenitors transplanted using the same in vivo delivery system migrated into damaged cochlear sensory epithelium and adopted a partial sensory cell fate. This is the first report of the survival and differentiation of hOPCs in ototoxic-injured mature cochlear epithelium, and it should stimulate further research into cell-based therapies for treatment of deafness.


Asunto(s)
Aumento de la Célula , Células Ciliadas Auditivas/efectos de los fármacos , Pérdida Auditiva/cirugía , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Ototoxicidad/cirugía , Trasplante de Células Madre/métodos , Amicacina/efectos adversos , Amicacina/farmacología , Animales , Umbral Auditivo/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ciclosporina/farmacología , Modelos Animales de Enfermedad , Factor 10 de Crecimiento de Fibroblastos/farmacología , Factor 3 de Crecimiento de Fibroblastos/farmacología , Cobayas , Células Ciliadas Auditivas/inmunología , Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva/inducido químicamente , Humanos , Inmunosupresores/farmacología , Células Madre Pluripotentes Inducidas/inmunología , Donadores Vivos
3.
Stem Cells ; 36(2): 192-205, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29044892

RESUMEN

One strategy for stem cell-based therapy of the cerebral cortex involves the generation and transplantation of functional, histocompatible cortical-like neurons from embryonic stem cells (ESCs). Diploid parthenogenetic Pg-ESCs have recently emerged as a promising source of histocompatible ESC derivatives for organ regeneration but their utility for cerebral cortex therapy is unknown. A major concern with Pg-ESCs is genomic imprinting. In contrast with biparental Bp-ESCs derived from fertilized oocytes, Pg-ESCs harbor two maternal genomes but no sperm-derived genome. Pg-ESCs are therefore expected to have aberrant expression levels of maternally expressed (MEGs) and paternally expressed (PEGs) imprinted genes. Given the roles of imprinted genes in brain development, tissue homeostasis and cancer, their deregulation in Pg-ESCs might be incompatible with therapy. Here, we report that, unexpectedly, only one gene out of 7 MEGs and 12 PEGs was differentially expressed between Pg-ESCs and Bp-ESCs while 13 were differentially expressed between androgenetic Ag-ESCs and Bp-ESCs, indicating that Pg-ESCs but not Ag-ESCs, have a Bp-like imprinting compatible with therapy. In vitro, Pg-ESCs generated cortical-like progenitors and electrophysiologically active glutamatergic neurons that maintained the Bp-like expression levels for most imprinted genes. In vivo, Pg-ESCs participated to the cortical lineage in fetal chimeras. Finally, transplanted Pg-ESC derivatives integrated into the injured adult cortex and sent axonal projections in the host brain. In conclusion, mouse Pg-ESCs generate functional cortical-like neurons with Bp-like imprinting and their derivatives properly integrate into both the embryonic cortex and the injured adult cortex. Collectively, our data support the utility of Pg-ESCs for cortical therapy. Stem Cells 2018;36:192-205.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Animales , Metilación de ADN/genética , Metilación de ADN/fisiología , Electrofisiología , Impresión Genómica/genética , Impresión Genómica/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Partenogénesis/genética , Partenogénesis/fisiología
5.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200230, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669615

RESUMEN

BACKGROUND AND OBJECTIVES: The aim of this study was to identify novel biomarkers for multiple sclerosis (MS) diagnosis and prognosis, addressing the critical need for specific and prognostically valuable markers in the field. METHODS: We conducted an extensive proteomic investigation, combining analysis of (1) CSF proteome from symptomatic controls, fast and slow converters after clinically isolated syndromes, and patients with relapsing-remitting MS (n = 10 per group) using label-free quantitative proteomics and (2) oligodendrocyte secretome changes under proinflammatory or proapoptotic conditions using stable isotope labeling by amino acids in cell culture. Proteins exhibiting differential abundance in both proteomic analyses were combined with other putative MS biomarkers, yielding a comprehensive list of 87 proteins that underwent quantification through parallel reaction monitoring (PRM) in a novel cohort, comprising symptomatic controls, inflammatory neurologic disease controls, and patients with MS at various disease stages (n = 10 per group). The 11 proteins that passed this qualification step were subjected to a new PRM assay within an expanded cohort comprising 158 patients with either MS at different disease stages or other inflammatory or noninflammatory neurologic disease controls. RESULTS: This study unveiled a promising biomarker signature for MS, including previously established candidates, such as chitinase 3-like protein 1, chitinase 3-like protein 2, chitotriosidase, immunoglobulin kappa chain region C, neutrophil gelatinase-associated lipocalin, and CD27. In addition, we identified novel markers, namely cat eye syndrome critical region protein 1 (adenosine deaminase 2, a therapeutic target in multiple sclerosis) and syndecan-1, a proteoglycan, also known as plasma cell surface marker CD138 and acting as chitinase 3-like protein 1 receptor implicated in inflammation and cancer signaling. CD138 exhibited good diagnostic accuracy in distinguishing MS from inflammatory neurologic disorders (area under the curve [AUC] = 0.85, CI 0.75-0.95). CD138 immunostaining was also observed in the brains of patients with MS and cultured oligodendrocyte precursor cells but was absent in astrocytes. DISCUSSION: These findings identify CD138 as a specific CSF biomarker for MS and suggest the selective activation of the chitinase 3-like protein 1/CD138 pathway within the oligodendrocyte lineage in MS. They offer promising prospects for improving MS diagnosis and prognosis by providing much-needed specificity and clinical utility. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that CD138 distinguishes multiple sclerosis from other inflammatory neurologic disorders with an AUC of 0.85 (95% CI 0.75-0.95).


Asunto(s)
Biomarcadores , Esclerosis Múltiple Recurrente-Remitente , Sindecano-1 , Humanos , Biomarcadores/líquido cefalorraquídeo , Adulto , Femenino , Masculino , Esclerosis Múltiple Recurrente-Remitente/líquido cefalorraquídeo , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Persona de Mediana Edad , Sindecano-1/líquido cefalorraquídeo , Estudios de Cohortes , Proteómica , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/diagnóstico , Oligodendroglía/metabolismo
6.
Glia ; 61(2): 225-39, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23047160

RESUMEN

Glioblastoma multiform (GBM) are devastating brain tumors containing a fraction of multipotent stem-like cells which are highly tumorigenic. These cells are resistant to treatments and are likely to be responsible for tumor recurrence. One approach to eliminate GBM stem-like cells would be to force their terminal differentiation. During development, neurons formation is controlled by neurogenic transcription factors such as Ngn1/2 and NeuroD1. We found that in comparison with oligodendrogenic genes, the expression of these neurogenic genes is low or absent in GBM tumors and derived cultures. We thus explored the effect of overexpressing these neurogenic genes in three CD133(+) Sox2(+) GBM stem-like cell cultures and the U87 glioma line. Introduction of Ngn2 in CD133(+) cultures induced massive cell death, proliferation arrest and a drastic reduction of neurosphere formation. Similar effects were observed with NeuroD1. Importantly, Ngn2 effects were accompanied by the downregulation of Olig2, Myc, Shh and upregulation of Dcx and NeuroD1 expression. The few surviving cells adopted a typical neuronal morphology and some of them generated action potentials. These cells appeared to be produced at the expense of GFAP(+) cells which were radically reduced after differentiation with Ngn2. In vivo, Ngn2-expressing cells were unable to form orthotopic tumors. In the U87 glioma line, Ngn2 could not induce neuronal differentiation although proliferation in vitro and tumoral growth in vivo were strongly reduced. By inducing cell death, cell cycle arrest or differentiation, this work supports further exploration of neurogenic proteins to oppose GBM stem-like and non-stem-like cell growth.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/farmacología , Neoplasias Encefálicas/patología , Diferenciación Celular , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Factores de Transcripción/farmacología , Antígeno AC133 , Antígenos CD/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Muerte Celular , Citometría de Flujo , Proteína Ácida Fibrilar de la Glía/metabolismo , Glicoproteínas/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/farmacología , Factor de Transcripción 2 de los Oligodendrocitos , Proteína Oncogénica p55(v-myc)/metabolismo , Péptidos/metabolismo , Factores de Transcripción SOXB1/metabolismo , Transfección , Células Tumorales Cultivadas
7.
BMC Neurosci ; 12: 99, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21985235

RESUMEN

BACKGROUND: The adult central nervous system (CNS) contains different populations of immature cells that could possibly be used to repair brain and spinal cord lesions. The diversity and the properties of these cells in the human adult CNS remain to be fully explored. We previously isolated Nestin+ Sox2+ neural multipotential cells from the adult human spinal cord using the neurosphere method (i.e. non adherent conditions and defined medium). RESULTS: Here we report the isolation and long term propagation of another population of Nestin+ cells from this tissue using adherent culture conditions and serum. QPCR and immunofluorescence indicated that these cells had mesenchymal features as evidenced by the expression of Snai2 and Twist1 and lack of expression of neural markers such as Sox2, Olig2 or GFAP. Indeed, these cells expressed markers typical of smooth muscle vascular cells such as Calponin, Caldesmone and Acta2 (Smooth muscle actin). These cells could not differentiate into chondrocytes, adipocytes, neuronal and glial cells, however they readily mineralized when placed in osteogenic conditions. Further characterization allowed us to identify the Nkx6.1 transcription factor as a marker for these cells. Nkx6.1 was expressed in vivo by CNS vascular muscular cells located in the parenchyma and the meninges. CONCLUSION: Smooth muscle cells expressing Nestin and Nkx6.1 is the main cell population derived from culturing human spinal cord cells in adherent conditions with serum. Mineralization of these cells in vitro could represent a valuable model for studying calcifications of CNS vessels which are observed in pathological situations or as part of the normal aging. In addition, long term propagation of these cells will allow the study of their interaction with other CNS cells and their implication in scar formation during spinal cord injury.


Asunto(s)
Calcificación Fisiológica/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Cultivo Primario de Células/métodos , Médula Espinal/irrigación sanguínea , Médula Espinal/metabolismo , Adulto , Adhesión Celular/fisiología , Separación Celular/métodos , Proteínas de Homeodominio/sangre , Humanos , Proteínas de Filamentos Intermediarios/sangre , Miocitos del Músculo Liso/citología , Proteínas del Tejido Nervioso/sangre , Nestina , Médula Espinal/citología
8.
Cells ; 10(12)2021 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-34943841

RESUMEN

Ependymal cells reside in the adult spinal cord and display stem cell properties in vitro. They proliferate after spinal cord injury and produce neurons in lower vertebrates but predominantly astrocytes in mammals. The mechanisms underlying this glial-biased differentiation remain ill-defined. We addressed this issue by generating a molecular resource through RNA profiling of ependymal cells before and after injury. We found that these cells activate STAT3 and ERK/MAPK signaling post injury and downregulate cilia-associated genes and FOXJ1, a central transcription factor in ciliogenesis. Conversely, they upregulate 510 genes, seven of them more than 20-fold, namely Crym, Ecm1, Ifi202b, Nupr1, Rbp1, Thbs2 and Osmr-the receptor for oncostatin, a microglia-specific cytokine which too is strongly upregulated after injury. We studied the regulation and role of Osmr using neurospheres derived from the adult spinal cord. We found that oncostatin induced strong Osmr and p-STAT3 expression in these cells which is associated with reduction of proliferation and promotion of astrocytic versus oligodendrocytic differentiation. Microglial cells are apposed to ependymal cells in vivo and co-culture experiments showed that these cells upregulate Osmr in neurosphere cultures. Collectively, these results support the notion that microglial cells and Osmr/Oncostatin pathway may regulate the astrocytic fate of ependymal cells in spinal cord injury.


Asunto(s)
Linaje de la Célula , Epéndimo/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Oncostatina M/metabolismo , ARN/genética , Traumatismos de la Médula Espinal/genética , Células Madre/patología , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Cilios/genética , Regulación hacia Abajo/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Subunidad beta del Receptor de Oncostatina M , ARN/metabolismo , Esferoides Celulares/metabolismo , Médula Espinal/patología , Regulación hacia Arriba/genética
9.
Stem Cells ; 27(11): 2722-33, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19785035

RESUMEN

In humans and rodents the adult spinal cord harbors neural stem cells located around the central canal. Their identity, precise location, and specific signaling are still ill-defined and controversial. We report here on a detailed analysis of this niche. Using microdissection and glial fibrillary acidic protein (GFAP)-green fluorescent protein (GFP) transgenic mice, we demonstrate that neural stem cells are mostly dorsally located GFAP(+) cells lying ependymally and subependymally that extend radial processes toward the pial surface. The niche also harbors doublecortin protein (Dcx)(+) Nkx6.1(+) neurons sending processes into the lumen. Cervical and lumbar spinal cord neural stem cells maintain expression of specific rostro-caudal Hox gene combinations and the niche shows high levels of signaling proteins (CD15, Jagged1, Hes1, differential screening-selected gene aberrative in neuroblastoma [DAN]). More surprisingly, the niche displays mesenchymal traits such as expression of epithelial-mesenchymal-transition zinc finger E-box-binding protein 1 (ZEB1) transcription factor and smooth muscle actin. We found ZEB1 to be essential for neural stem cell survival in vitro. Proliferation within the niche progressively ceases around 13 weeks when the spinal cord reaches its final size, suggesting an active role in postnatal development. In addition to hippocampus and subventricular zone niches, adult spinal cord constitutes a third central nervous system stem cell niche with specific signaling, cellular, and structural characteristics that could possibly be manipulated to alleviate spinal cord traumatic and degenerative diseases.


Asunto(s)
Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Nicho de Células Madre/citología , Nicho de Células Madre/metabolismo , Células Madre/citología , Actinas/metabolismo , Animales , Proliferación Celular , Proteína Doblecortina , Regulación del Desarrollo de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/metabolismo , Células Madre/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
10.
Stem Cell Reports ; 12(5): 1159-1177, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31031189

RESUMEN

Anamniotes, rodents, and young humans maintain neural stem cells in the ependymal zone (EZ) around the central canal of the spinal cord, representing a possible endogenous source for repair in mammalian lesions. Cell diversity and genes specific for this region are ill defined. A cellular and molecular resource is provided here for the mouse and human EZ based on RNA profiling, immunostaining, and fluorescent transgenic mice. This uncovered the conserved expression of 1,200 genes including 120 transcription factors. Unexpectedly the EZ maintains an embryonic-like dorsal-ventral pattern of expression of spinal cord developmental transcription factors (ARX, FOXA2, MSX1, and PAX6). In mice, dorsal and ventral EZ cells express Vegfr3 and are derived from the embryonic roof and floor plates. The dorsal EZ expresses a high level of Bmp6 and Gdf10 genes and harbors a subpopulation of radial quiescent cells expressing MSX1 and ID4 transcription factors.


Asunto(s)
Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , ARN/genética , Médula Espinal/metabolismo , Células Madre/metabolismo , Animales , Células Madre Embrionarias/citología , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Femenino , Humanos , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Persona de Mediana Edad , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , ARN/metabolismo , Médula Espinal/citología , Nicho de Células Madre , Células Madre/citología , Adulto Joven
11.
Aging (Albany NY) ; 10(6): 1442-1453, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29920476

RESUMEN

Progressive loss of tissue homeostasis is a hallmark of numerous age-related pathologies, including osteoarthritis (OA). Accumulation of senescent chondrocytes in joints contributes to the age-dependent cartilage loss of functions through the production of hypertrophy-associated catabolic matrix-remodeling enzymes and pro-inflammatory cytokines. Here, we evaluated the effects of the secreted variant of the anti-aging hormone α-Klotho on cartilage homeostasis during both cartilage formation and OA development. First, we found that α-Klotho expression was detected during mouse limb development, and transiently expressed during in vitro chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Genome-wide gene array analysis of chondrocytes from OA patients revealed that incubation with recombinant secreted α-Klotho repressed expression of the NOS2 and ZIP8/MMP13 catabolic remodeling axis. Accordingly, α-Klotho expression was reduced in chronically IL1ß-treated chondrocytes and in cartilage of an OA mouse model. Finally, in vivo intra-articular secreted α-Kotho gene transfer delays cartilage degradation in the OA mouse model. Altogether, our results reveal a new tissue homeostatic function for this anti-aging hormone in protecting against OA onset and progression.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Glucuronidasa/metabolismo , Homeostasis/fisiología , Metaloproteinasa 13 de la Matriz/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Animales , Cartílago/crecimiento & desarrollo , Cartílago/metabolismo , Proteínas de Transporte de Catión/genética , Condrocitos/metabolismo , Embrión de Mamíferos/metabolismo , Regulación de la Expresión Génica/fisiología , Glucuronidasa/genética , Humanos , Proteínas Klotho , Metaloproteinasa 13 de la Matriz/genética , Ratones
12.
Neuroreport ; 18(15): 1539-42, 2007 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-17885597

RESUMEN

Neurosphere cultures provide a useful model to study neural stem/progenitor cells (NSC/NPCs). The degree to which neurospheres (NS) retain their regional identity in vitro has, however, been questioned. Here, NS obtained from mouse embryonic cortex, striatum or spinal cord were compared after differentiation. Neurons from cortical NS formed well ordered clusters containing astrocytes, those from striatal NS formed an external ring at the borderof the astrocyte layer, whereas those from spinal cord NS spread radially like the astrocytes. Such in-vitro neural behaviour was region-specific and persisted in clonal conditions, providing evidence of the maintenance of positional cues in NS cultures.


Asunto(s)
Células Madre Embrionarias/fisiología , Neuronas/fisiología , Animales , Astrocitos/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/embriología , Células Clonales , Análisis por Conglomerados , Femenino , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C57BL , Neostriado/citología , Neostriado/embriología , Fibras Nerviosas/fisiología , Embarazo , Médula Espinal/citología , Médula Espinal/embriología
13.
PLoS One ; 11(3): e0151274, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26953813

RESUMEN

Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown. AD occurs in stem cells during development but was also recently observed in cancer stem cells. Here, we demonstrate the asymmetric distribution of the main astrocytic intermediate filament, namely the glial fibrillary acid protein (GFAP), in mitotic glioma multipotent cells isolated from glioblastoma (GBM), the most frequent type of brain tumor. Unequal mitotic repartition of GFAP was also observed in mice non-tumoral neural stem cells indicating that this process occurs across species and is not restricted to cancerous cells. Immunofluorescence and videomicroscopy were used to capture these rare and transient events. Considering the role of intermediate filaments in cytoplasm organization and cell signaling, we propose that asymmetric distribution of GFAP could possibly participate in the regulation of normal and cancerous neural stem cell fate.


Asunto(s)
División Celular Asimétrica , Proteína Ácida Fibrilar de la Glía/metabolismo , Glioma/metabolismo , Células Madre Multipotentes/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Expresión Génica , Genes Reporteros , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Ratones , Mitosis , Células-Madre Neurales/metabolismo , Transporte de Proteínas
14.
J Biotechnol ; 236: 35-44, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27497759

RESUMEN

Fluorescence expression tools for stable and innocuous whole mycoplasma cell labelling have been developed. A Tn4001-derivative mini-transposon affording unmarked, stable mutagenesis in mycoplasmas was modified to allow the constitutive, high-level expression of mCherry, mKO2 and mNeonGreen. These tools were used to introduce the respective fluorescent proteins as chromosomal tags in the phylogenetically distant species Mycoplasma mycoides subsp. mycoides and Mycoplasma bovis. The production, selection and characterisation of fluorescent clones were straightforward and resulted in the unprecedented observation of red and green fluorescent mycoplasma colonies in the two species, with no apparent cytotoxicity. Equivalent fluorescence expression levels were quantified by flow cytometry in both species, suggesting that these tools can be broadly applied in mycoplasmas. A macrophage infection assay was performed to assess the usefulness of mNeonGreen-expressing strains for monitoring mycoplasma infections, and notably cell invasion. The presence of fluorescent mycoplasmas inside live phagocytic cells was detected and quantified by flow cytometry and corroborated by confocal microscopy, which allowed the identification of individual mycoplasmas in the cytoplasm of infected cells. The fluorescence expression tools developed in this study are suitable for host-pathogen interaction studies and offer innumerable perspectives for the functional analysis of mycoplasmas both in vitro and in vivo.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Imagen Molecular/métodos , Mycoplasma/química , Mycoplasma/citología , Espectrometría de Fluorescencia/métodos , Animales , Bovinos , Células Cultivadas , Citometría de Flujo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mycoplasma/metabolismo , Mycoplasma/patogenicidad , Infecciones por Mycoplasma/microbiología , Infecciones por Mycoplasma/fisiopatología , Fagocitos/citología , Fagocitos/microbiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reproducibilidad de los Resultados
15.
PLoS One ; 10(4): e0122337, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25875008

RESUMEN

The proliferation and differentiation of neural stem cells are tightly controlled by intrinsic and extrinsic cues. Cell adhesion molecules are increasingly recognized as regulators of these processes. Here we report the expression of the olfactory cell adhesion molecule (OCAM/NCAM2/RNCAM) during mouse spinal cord development and in neural stem cells cultured as neurospheres. OCAM is also weakly expressed in the dormant adult stem cell niche around the central canal and is overexpressed after spinal cord injury. Both transmembrane (TM) and glycosylphosphatidylinositol (GPI)-linked isoforms are present in neurospheres. Electron microscopy and internalisation experiments revealed a dynamic trafficking of OCAM between the membrane and intracellular compartments. After differentiation, OCAM remains in neurons and oligodendrocytes whereas no expression is detected in astrocytes. Using OCAM knockout (KO) mice, we found that mutant spinal cord stem cells showed an increased proliferation and self-renewal rates although no effect on differentiation was observed. This effect was reversed by lentivirus-mediated re-introduction of OCAM. Mechanistically, we identified the ErbB2/Neu/HER2 protein as being implicated in the enhanced proliferation of mutant cells. ErbB2 protein expression and phosphorylation level were significantly increased in KO cells whereas no difference was observed at the mRNA level. Overexpression of ErbB2 in wild-type and mutant cells also increased their growth while reintroduction of OCAM in mutant cells reduced the level of phosphorylated ErbB2. These results indicate that OCAM exerts a posttranscriptional control on the ErbB2 signalling in spinal cord stem cells. This study adds further support for considering cell adhesion molecules as regulators of the ErbB signalling.


Asunto(s)
Células Madre Embrionarias/metabolismo , Moléculas de Adhesión de Célula Nerviosa/biosíntesis , Receptor ErbB-2/biosíntesis , Médula Espinal/metabolismo , Animales , Adhesión Celular/genética , Proliferación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/genética , ARN Mensajero/biosíntesis , Receptor ErbB-2/genética , Transducción de Señal/genética , Médula Espinal/crecimiento & desarrollo
16.
J Comp Neurol ; 442(1): 6-22, 2002 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-11754363

RESUMEN

Hair cell losses in the mammalian cochlea following an ototoxic insult are irreversible. However, past studies have shown that amikacin treatment in rat cochleae resulted in the transient presence of atypical Deiters' cells (ACs) in the damaged organ of Corti. These ACs arise through a transformation of Deiters' cells, which produce, at their apical pole, densely packed microvilli reminiscent of early-differentiating stereociliary bundles. The ACs do not, however, express typical hair cell markers such as parvalbumin or calbindin. The present study was designed to determine whether specific growth factors could influence the survival and differentiation of these ACs and stimulate hair cell regeneration processes in vitro. Apical-medial segments of organ of Corti of juvenile amikacin-treated rats were established as organotypic cultures, and the effects of epidermal growth factor (EGF), insulin-like growth factor 1 (IGF-1), transforming growth factor-alpha (TGFalpha), and retinoic acid were studied using morphological and molecular approaches. Our results indicate that TGFalpha supports the survival of the damaged organ of Corti and influences ACs differentiation in vitro, possibly acting through reorganization of the actin cytoskeleton. These effects could be directly mediated through activation of the EGF receptor, which is expressed by supporting cells in the mature organ of Corti. TGFalpha does not, however, allow the ACs to progress towards a hair cell phenotype.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Degeneración Nerviosa/tratamiento farmacológico , Regeneración Nerviosa/efectos de los fármacos , Neurotoxinas/toxicidad , Factor de Crecimiento Transformador alfa/farmacología , Actinas/efectos de los fármacos , Actinas/metabolismo , Amicacina/toxicidad , Animales , Antibacterianos/toxicidad , Bromodesoxiuridina , Diferenciación Celular/fisiología , División Celular/efectos de los fármacos , División Celular/fisiología , Supervivencia Celular/fisiología , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/ultraestructura , Inmunohistoquímica , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Microscopía Electrónica , Microscopía Electrónica de Rastreo , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Regeneración Nerviosa/fisiología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/ultraestructura , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar , Factor de Crecimiento Transformador alfa/metabolismo , Tretinoina/metabolismo , Tretinoina/farmacología
17.
Brain Res Mol Brain Res ; 105(1-2): 98-107, 2002 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-12399112

RESUMEN

The functioning of the mammalian cochlea is entirely based on its mechanical properties, which are supported by a highly complex tissue architecture resulting from the precise arrangement of sensory hair cells and non-sensory supporting cells. Growing evidence indicates that evolutionary conserved signaling pathways are involved in inner ear development and in the differentiation of its diverse cell types. We investigated whether members of the Wnt and Frizzled gene families, which play key roles in a wide variety of cellular and developmental processes, are expressed in the postnatal rat cochlea. A PCR screening of a rat cochlea cDNA library performed with degenerate primers allowed us to isolate five members of the Wnt gene family (RWnt-2B, -4, -5A, -5B, and -7A) and six members of the Frizzled gene family (Rfz1, Rfz2, Rfz3, Rfz4, Rfz6, Rfz9). In situ hybridization and immunocytochemistry experiments demonstrated that RWnt-4, -5B, -7A have distinct, although partly overlapping, expression patterns in the juvenile rat cochlea. These results suggest that the Wnt-Frizzled signaling pathway could be involved in several aspects of late cochlear differentiation and/or auditory function.


Asunto(s)
Diferenciación Celular/genética , Cóclea/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Proto-Oncogénicas/genética , Receptores de Neurotransmisores/genética , Transducción de Señal/genética , Proteínas de Pez Cebra , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , Cóclea/citología , Cóclea/metabolismo , ADN Complementario/análisis , ADN Complementario/genética , Receptores Frizzled , Biblioteca de Genes , Pruebas Genéticas , Glicoproteínas/genética , Glicoproteínas/metabolismo , Inmunohistoquímica , Células Laberínticas de Soporte/citología , Células Laberínticas de Soporte/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/metabolismo , Ratas , Receptores Acoplados a Proteínas G , Receptores de Neurotransmisores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Wnt , Proteína Wnt4
18.
Stem Cells ; 25(2): 340-53, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17053213

RESUMEN

Neural stem cells cultured with fibroblast growth factor 2 (FGF2)/epidermal growth factor (EGF) generate clonal expansions called neurospheres (NS), which are widely used for therapy in animal models. However, their cellular composition is still poorly defined. Here, we report that NS derived from several embryonic and adult central nervous system (CNS) regions are composed mainly of remarkable cells coexpressing radial glia markers (BLBP, RC2, GLAST), oligodendrogenic/neurogenic factors (Mash1, Olig2, Nkx2.2), and markers that in vivo are typical of the oligodendrocyte lineage (NG2, A2B5, PDGFR-alpha). On NS differentiation, the latter remain mostly expressed in neurons, together with Olig2 and Mash1. Using cytometry, we show that in growing NS the small population of multipotential self-renewing NS-forming cells are A2B5(+) and NG2(+). Additionally, we demonstrate that these NS-forming cells in the embryonic spinal cord were initially NG2(-) and rapidly acquired NG2 in vitro. NG2 and Olig2 were found to be rapidly induced by cell culture conditions in spinal cord neural precursor cells. Olig2 expression was also induced in astrocytes and embryonic peripheral nervous system (PNS) cells in culture after EGF/FGF treatment. These data provide new evidence for profound phenotypic modifications in CNS and PNS neural precursor cells induced by culture conditions.


Asunto(s)
Antígenos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sistema Nervioso Central/citología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Sistema Nervioso Periférico/citología , Fenotipo , Proteoglicanos/metabolismo , Células Madre/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos/citología , Gangliósidos/metabolismo , Regulación de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteína Homeobox Nkx-2.2 , Ratones , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Transcripción SOX9 , Médula Espinal/citología , Médula Espinal/embriología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA