Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 26(5): 1710-1713, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35118791

RESUMEN

Hypertension is associated with high circulating angiotensin II (Ang II). We have reported that autophagy regulates Ang II-induced vascular smooth muscle cell (VSMC) hypertrophy, but the mechanism mediating this effect is still unknown. Therefore, we studied how Ang II regulates LC3 levels in VSMCs and whether Bag3, a co-chaperone known to regulate LC3 total levels, may be involved in the effects elicited by Ang II. A7r5 cell line or rat aortic smooth muscle cell (RASMC) primary culture were stimulated with Ang II 100 nM for 24 h and LC3 I, LC3 II and Bag3 protein levels were determined by Western blot. MAP1LC3B mRNA levels were assessed by RT-qPCR. Ang II increased MAP1LC3B mRNA levels and protein levels of LC3 I, LC3 II and total LC3 (LC3 I + LC3 II). Cycloheximide, but not actinomycin D, abolished LC3 II and total LC3 increase elicited by Ang II in RASMCs. In A7r5 cells, cycloheximide prevented the Ang II-mediated increase of LC3 I and total LC3, but not LC3 II. Moreover, Ang II increased Bag3 levels, but this increase was not observed upon co-administration with either losartan 1 µM (AT1R antagonist) or Y-27632 10 µM (ROCK inhibitor). These results suggest that Ang II may regulate total LC3 content through transcriptional and translational mechanisms. Moreover, Bag3 is increased in response to Ang II by a AT1R/ROCK signalling pathway. These data provide preliminary evidence suggesting that Ang II may stimulate autophagy in VSMCs by increasing total LC3 content and LC3 processing.


Asunto(s)
Angiotensina II , Músculo Liso Vascular , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Células Cultivadas , Cicloheximida/metabolismo , Cicloheximida/farmacología , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , ARN Mensajero/genética , Ratas
2.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614108

RESUMEN

Cardiomyopathy is commonly observed in patients with autosomal dominant polycystic kidney disease (ADPKD), even when they have normal renal function and arterial pressure. The role of cardiomyocyte polycystin-1 (PC1) in cardiovascular pathophysiology remains unknown. PC1 is a potential regulator of BIN1 that maintains T-tubule structure, and alterations in BIN1 expression induce cardiac pathologies. We used a cardiomyocyte-specific PC1-silenced (PC1-KO) mouse model to explore the relevance of cardiomyocyte PC1 in the development of heart failure (HF), considering reduced BIN1 expression induced T-tubule remodeling as a potential mechanism. PC1-KO mice exhibited an impairment of cardiac function, as measured by echocardiography, but no signs of HF until 7-9 months of age. Of the PC1-KO mice, 43% died suddenly at 7 months of age, and 100% died after 9 months with dilated cardiomyopathy. Total BIN1 mRNA, protein levels, and its localization in plasma membrane-enriched fractions decreased in PC1-KO mice. Moreover, the BIN1 + 13 isoform decreased while the BIN1 + 13 + 17 isoform was overexpressed in mice without signs of HF. However, BIN1 + 13 + 17 overexpression was not observed in mice with HF. T-tubule remodeling and BIN1 score measured in plasma samples were associated with decreased PC1-BIN1 expression and HF development. Our results show that decreased PC1 expression in cardiomyocytes induces dilated cardiomyopathy associated with diminished BIN1 expression and T-tubule remodeling. In conclusion, positive modulation of BIN1 expression by PC1 suggests a novel pathway that may be relevant to understanding the pathophysiological mechanisms leading to cardiomyopathy in ADPKD patients.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Riñón Poliquístico Autosómico Dominante , Canales Catiónicos TRPP , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cardiomiopatía Dilatada/patología , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Isoformas de Proteínas/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
J Cell Mol Med ; 24(8): 4871-4876, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32101370

RESUMEN

Small extracellular vesicles (EVs) are novel players in vascular biology. However, a thorough understanding of their production and function remains elusive. Endothelial senescence is a key feature of vascular ageing and thus, is an attractive therapeutic target for the treatment of vascular disease. In this study, we sought to characterize the EV production of senescent endothelial cells. To achieve this, Human Umbilical Vascular Endothelial Cells (HUVECs) were replicated until they reached senescence, as determined by measurement of Senescence-Associated ß-Galactosidase activity via microscopy and flow cytometry. Expression of the endosomal marker Rab7 and the EV marker CD63 was determined by immunofluorescence. Small EVs were isolated by ultracentrifugation and characterized using electron microscopy, nanoparticle tracking analysis and immunoassays to assess morphology, size, concentration and expression of exosome markers CD9 and CD81. Migration of HUVECs in response to EVs was studied using a transwell assay. The results showed that senescent endothelial cells express higher levels of Rab7 and CD63. Moreover, senescent endothelial cells produced higher levels of CD9- and CD81-positive EVs. Additionally, small EVs from both young and senescent endothelial cells promoted HUVEC migration. Overall, senescent endothelial cells produce an increased number of functional small EVs, which may have a role in vascular physiology and disease.


Asunto(s)
Senescencia Celular/genética , Células Endoteliales/metabolismo , Exosomas/genética , Vesículas Extracelulares/genética , Biomarcadores/metabolismo , Células Endoteliales/citología , Citometría de Flujo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Tetraspanina 29/genética , Tetraspanina 30/genética , beta-Galactosidasa/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7
4.
J Cell Mol Med ; 22(2): 926-935, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29159980

RESUMEN

The Reperfusion Injury Salvage Kinase (RISK) pathway is considered the main pro-survival kinase cascade mediating the ischaemic preconditioning (IPC) cardioprotective effect. To assess the role of PI3K-Akt, its negative regulator PTEN and other pro-survival proteins such as ERK and STAT3 in the context of IPC, C57BL/6 mouse hearts were retrogradely perfused in a Langendorff system and subjected to 4 cycles of 5 min. ischaemia and 5 min. reperfusion prior to 35 min. of global ischaemia and 120 min. of reperfusion. Wortmannin, a PI3K inhibitor, was administered either at the stabilization period or during reperfusion. Infarct size was assessed using triphenyl tetrazolium staining, and phosphorylation levels of Akt, PTEN, ERK, GSK3ß and STAT3 were evaluated using Western blot analyses. IPC reduced infarct size in hearts subjected to lethal ischaemia and reperfusion, but this effect was lost in the presence of Wortmannin, whether it was present only during preconditioning or only during early reperfusion. IPC increased the levels of Akt phosphorylation during both phases and this effect was fully abrogated by PI3K, whilst its downstream GSK3ß was phosphorylated only during the trigger phase after IPC. Both PTEN and STAT3 were phosphorylated during both phases after IPC, but this was PI3K independent. IPC increases ERK phosphorylation during both phases, being only PI3K-dependent during the IPC phase. In conclusion, PI3K-Akt plays a major role in IPC-induced cardioprotection. However, PTEN, ERK and STAT3 are also phosphorylated by IPC through a PI3K-independent pathway, suggesting that cardioprotection is mediated through more than one cell signalling cascade.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosfohidrolasa PTEN/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Análisis de Supervivencia
5.
J Cell Mol Med ; 22(1): 141-151, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28840975

RESUMEN

Many patients with ischaemic heart disease also have diabetes. As myocardial infarction is a major cause of mortality and morbidity in these patients, treatments that increase cell survival in response to ischaemia and reperfusion are needed. Exosomes-nano-sized, lipid vesicles released from cells-can protect the hearts of non-diabetic rats. We previously showed that exosomal HSP70 activates a cardioprotective signalling pathway in cardiomyocytes culminating in ERK1/2 and HSP27 phosphorylation. Here, we investigated whether the exosomal cardioprotective pathway remains intact in the setting of type II diabetes. Exosomes were isolated by differential centrifugation from non-diabetic and type II diabetic patients, from non-diabetic and Goto Kakizaki type II diabetic rats, and from normoglycaemic and hyperglycaemic endothelial cells. Exosome size and number were not significantly altered by diabetes. CD81 and HSP70 exosome markers were increased in diabetic rat exosomes. However, exosomes from diabetic rats no longer activated the ERK1/2 and HSP27 cardioprotective pathway and were no longer protective in a primary rat cardiomyocytes model of hypoxia and reoxygenation injury. Hyperglycaemic culture conditions were sufficient to impair protection by endothelial exosomes. Importantly, however, exosomes from non-diabetic rats retained the ability to protect cardiomyocytes from diabetic rats. Exosomes from diabetic plasma have lost the ability to protect cardiomyocytes, but protection can be restored with exosomes from non-diabetic plasma. These results support the concept that exosomes may be used to protect cardiomyocytes against ischaemia and reperfusion injury, even in the setting of type II diabetes.


Asunto(s)
Cardiotónicos/uso terapéutico , Diabetes Mellitus Tipo 2/terapia , Exosomas/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Diabetes Mellitus Tipo 2/patología , Exosomas/ultraestructura , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Nanopartículas/química , Nanopartículas/ultraestructura , Fosforilación , Ratas Wistar , Tetraspanina 28/metabolismo
6.
Pharmacol Res ; 135: 112-121, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30048754

RESUMEN

Angiotensin-(19), a peptide of the non-classical renin angiotensin system, has been shown to prevent and revert hypertension and cardiac hypertrophy. We hypothetized that systemic delivery of angiotensin-(1-9) following myocardial infarction will also be protective and extend to provide protection during reperfusion of the ischemic heart. Adult Sprague Dawley rats were subjected to left anterior descending artery ligation and treated with angiotensin-(1-9) via osmotic mini-pump for 2 weeks in the presence or absence of Mas receptor or AT2R antagonists (A779 and PD123319, respectively). Myocardial death and left ventricular function were evaluated after infarction. Infarct size and functional parameters were determined in isolated rat hearts after global ischemia/reperfusion in the presence of angiotensin-(1-9) plus receptor antagonists or Akt inhibitor at reperfusion. in vitro, neonatal rat ventricular cardiomyocytes underwent simulated ischemia/reperfusion and angiotensin-(1-9) was co-incubated with A779, PD123319 or Akt inhibitor. Systemic delivery of angiotensin-(1-9) significantly decreased cell death and improved left ventricular recovery after in vivo myocardial infarction. Perfusion with the peptide reduced the infarct size and improved functional recovery after ex vivo ischemia/reperfusion. In vitro, angiotensin-(1-9) decreased cell death in isolated neonatal rat ventricular cardiomyocytes subjected to simulated ischemia/reperfusion. The cardioprotective effects of angiotensin-(1-9) were blocked by PD123319 and Akti VIII but not by A779. Angiotensin-(1-9) limits reperfusion-induced cell death by an AT2R- and Aktdependent mechanism. Angiotensin-(1-9) is a novel strategy to protect against cardiac ischemia/reperfusion injury.


Asunto(s)
Angiotensina I/uso terapéutico , Cardiotónicos/uso terapéutico , Daño por Reperfusión Miocárdica/prevención & control , Fragmentos de Péptidos/uso terapéutico , Angiotensina I/farmacología , Animales , Animales Recién Nacidos , Cardiotónicos/farmacología , Células Cultivadas , Corazón/efectos de los fármacos , Corazón/fisiología , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Fragmentos de Péptidos/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 2/metabolismo
7.
Int J Mol Sci ; 19(2)2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29439404

RESUMEN

Ventricular arrhythmias are a common cause of sudden cardiac death, and their occurrence is higher in obese subjects. Abnormal gating of ryanodine receptors (RyR2), the calcium release channels of the sarcoplasmic reticulum, can produce ventricular arrhythmias. Since obesity promotes oxidative stress and RyR2 are redox-sensitive channels, we investigated whether the RyR2 activity was altered in obese mice. Mice fed a high fat diet (HFD) became obese after eight weeks and exhibited a significant increase in the occurrence of ventricular arrhythmias. Single RyR2 channels isolated from the hearts of obese mice were more active in planar bilayers than those isolated from the hearts of the control mice. At the molecular level, RyR2 channels from HFD-fed mice had substantially fewer free thiol residues, suggesting that redox modifications were responsible for the higher activity. Apocynin, provided in the drinking water, completely prevented the appearance of ventricular arrhythmias in HFD-fed mice, and normalized the activity and content of the free thiol residues of the protein. HFD increased the expression of NOX4, an isoform of NADPH oxidase, in the heart. Our results suggest that HFD increases the activity of RyR2 channels via a redox-dependent mechanism, favoring the appearance of ventricular arrhythmias.


Asunto(s)
Arritmias Cardíacas/etiología , Dieta Alta en Grasa/efectos adversos , Obesidad/complicaciones , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Disfunción Ventricular/etiología , Acetofenonas/uso terapéutico , Animales , Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , NADPH Oxidasa 4/metabolismo , Obesidad/etiología , Especies Reactivas de Oxígeno/metabolismo , Disfunción Ventricular/tratamiento farmacológico
8.
Basic Res Cardiol ; 112(6): 66, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29043508

RESUMEN

Ischemic preconditioning (IPC) limits myocardial infarct size through the activation of the PI3K-Akt signal cascade; however, little is known about the roles of individual PI3K isoforms in cardioprotection. We aimed, therefore, to elucidate the role of the PI3Kα isoform in cardioprotection Pharmacological PI3Kα inhibition was assessed in isolated-perfused mouse hearts subjected to ischemia/reperfusion injury (IRI), either during the IPC procedure or at reperfusion. PI3Kα inhibition abrogated the IPC-induced protective effect at reperfusion, but not when given only during the IPC protocol. These results were confirmed in an in vivo model. Moreover, pharmacological PI3Kα activation by insulin at reperfusion was sufficient to confer cardioprotection against IRI. In addition, PI3Kα was shown to be expressed and activated in mouse cardiomyocytes, mouse cardiac endothelial cells, as well as in mouse and human heart tissue. Furthermore, PI3Kα was shown to mediate its effect though the inhibition of mitochondrial permeability transition pore opening. In conclusion, PI3Kα activity is required during the early reperfusion phase to reduce myocardial infarct size. This suggests that strategies specifically enhancing the α isoform of PI3K at reperfusion promote tissue salvage and as such, and could provide a direct target for clinical treatment of IRI.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Cardiotónicos/farmacología , Humanos , Isoenzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos
9.
Pharmacol Res ; 103: 318-27, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26607864

RESUMEN

The alpha2-adrenergic receptor agonist Dexmedetomidine (Dex) is a sedative medication used by anesthesiologists. Dex protects the heart against ischemia-reperfusion (IR) and can also act as a preconditioning mimetic. The mechanisms involved in Dex-dependent cardiac preconditioning, and whether this action occurs directly or indirectly on cardiomyocytes, still remain unclear. The endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathway and endothelial cells are known to play key roles in cardioprotection against IR injury. Therefore, the aims of this work were to evaluate whether the eNOS/NO pathway mediates the pharmacological cardiac effect of Dex, and whether endothelial cells are required in this cardioprotective action. Isolated adult rat hearts were treated with Dex (10nM) for 25min and the dimerization of eNOS and production of NO were measured. Hearts were then subjected to global IR (30/120min) and the role of the eNOS/NO pathway was evaluated. Dex promoted the activation of eNOS and production of NO. Dex reduced the infarct size and improved the left ventricle function recovery, but this effect was reversed when Dex was co-administered with inhibitors of the eNOS/NO/PKG pathway. In addition, Dex was unable to reduce cell death in isolated adult rat cardiomyocytes subjected to simulated IR. Cardiomyocyte death was attenuated by co-culturing them with endothelial cells pre-treated with Dex. In summary, our results show that Dex triggers cardiac protection by activating the eNOS/NO signaling pathway. This pharmacological effect of Dex requires its interaction with the endothelium.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Cardiotónicos/farmacología , Dexmedetomidina/farmacología , Daño por Reperfusión Miocárdica/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Agonistas de Receptores Adrenérgicos alfa 2/uso terapéutico , Animales , Cardiotónicos/uso terapéutico , Células Cultivadas , Técnicas de Cocultivo , Dexmedetomidina/uso terapéutico , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Corazón/efectos de los fármacos , Corazón/fisiopatología , Humanos , Masculino , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Ratas Sprague-Dawley
11.
J Cardiovasc Pharmacol ; 63(6): 477-87, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24477044

RESUMEN

Mitochondria are key organelles for ATP production in cardiomyocytes, which is regulated by processes of fission and fusion. We hypothesized that the mitochondria fusion protein dynamin-related protein 1 (Drp1) inhibition, attenuates ischemia-reperfusion (I/R) injury through modifications in mitochondrial metabolism. Rats were subjected to I/R through coronary artery ligation, and isolated cardiomyocytes were treated with an ischemia-mimicking solution. In vivo, cardiac function, myocardial infarction area, and mitochondrial morphology were determined, whereas in vitro, viability, mitochondrial membrane potential, intracellular ATP levels, and oxygen consumption rate (OCR) were assessed. In both models, an adenovirus expressing Drp1 dominant-negative K38A (Drp1K38A) was used to induce Drp1 loss-of-function. Our results showed that I/R stimulated mitochondrial fission. Myocardial infarction size and cell death induced by I/R were significantly reduced, whereas cardiac function after I/R was improved in Drp1K38A-treated rats compared with controls. Drp1K38A-transduced cardiomyocytes showed lower OCR with no decrease in intracellular ATP levels, and on I/R, a larger decrease in OCR with a smaller reduction in intracellular ATP level was observed. However, proton leak-associated oxygen consumption was comparatively higher in Drp1K38A-treated cardiomyocytes, suggesting a protective mitochondrial uncoupling effect against I/R. Collectively, our results show that Drp1 inhibition triggers cardioprotection by reducing mitochondrial metabolism during I/R.


Asunto(s)
Dinaminas/biosíntesis , Miocitos Cardíacos/metabolismo , Consumo de Oxígeno/fisiología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Animales , Células Cultivadas , Dinaminas/antagonistas & inhibidores , Masculino , Ratas , Ratas Sprague-Dawley
12.
Curr Cardiol Rev ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38275069

RESUMEN

The use of cardioprotective strategies as adjuvants of cardioplegic solutions has become an ideal alternative for the improvement of post-surgery heart recovery. The choice of the optimal cardioplegia, as well as its distribution mechanism, remains controversial in the field of cardiovascular surgery. There is still a need to search for new and better cardioprotective methods during cardioplegic procedures. New techniques for the management of cardiovascular complications during cardioplegia have evolved with new alternatives and additives, and each new strategy provides a tool to neutralize the damage after ischemia/reperfusion events. Researchers and clinicians have committed themselves to studying the effect of new strategies and adjuvant components with the potential to improve the cardioprotective effect of cardioplegic solutions in preventing myocardial ischemia/reperfusion-induced injury during cardiac surgery. The aim of this review is to explore the different types of cardioplegia, their protection mechanisms, and which strategies have been proposed to enhance the function of these solutions in hearts exposed to cardiovascular pathologies that require surgical alternatives for their corrective progression.

13.
IUBMB Life ; 65(7): 593-601, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23671040

RESUMEN

Insulin-like growth factor-1 (IGF-1) signaling is a key pathway in the control of cell growth and survival. Three critical nodes in the IGF-1 signaling pathway have been described in cardiomyocytes: protein kinase Akt/mammalian target of rapamycin (mTOR), Ras/Raf/extracellular signal-regulated kinase (ERK), and phospholipase C (PLC)/inositol 1,4,5-triphosphate (InsP3 )/Ca(2+) . The Akt/mTOR and Ras/Raf/ERK signaling arms govern survival in the settings of cardiac stress and hypertrophic growth. By contrast, PLC/InsP3 /Ca(2+) functions to regulate metabolic adaptability and gene transcription. Autophagy is a catabolic process involved in protein degradation, organelle turnover, and nonselective breakdown of cytoplasmic components during nutrient starvation or stress. In the heart, autophagy is observed in a variety of human pathologies, where it can be either adaptive or maladaptive, depending on the context. We proposed the hypothesis that IGF-1 protects the heart by rescuing the mitochondrial metabolism and the energetics state, reducing cell death and controls the potentially exacerbate autophagic response to nutritional stress. In light of the importance of IGF-1 and autophagy in the heart, we review here IGF-1 signaling and autophagy regulation in the context of cardiomyocyte nutritional stress.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Fisiológico , Autofagia , Proliferación Celular , Humanos , Mitocondrias/metabolismo , Miocitos Cardíacos/fisiología , Transducción de Señal
14.
Front Physiol ; 14: 1327402, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288352

RESUMEN

Introduction: Short episodes of ischemia-reperfusion (IR) in the heart (classical ischemic preconditioning, IPC) or in a limb (remote ischemic preconditioning, RIPC) before a prolonged ischemic episode, reduce the size of the infarct. It is unknown whether IPC and RIPC share common mechanisms of protection. Animals KO for NOX2, a superoxide-producing enzyme, or KO for NLRP3, a protein component of inflammasome, are not protected by IPC. The aim of this study was to investigate if NOX2 or NLRP3 inflammasome are involved in the protection induced by RIPC. Methods: We preconditioned rats using 4 × 5 min periods of IR in the limb with or without a NOX2 inhibitor (apocynin) or an NLRP3 inhibitor (Bay117082). In isolated hearts, we measured the infarct size after 30 min of ischemia and 60 min of reperfusion. In hearts from preconditioned rats we measured the activity of NOX2; the mRNA of Nrf2, gamma-glutamylcysteine ligase, glutathione dehydrogenase, thioredoxin reductase and sulfiredoxin by RT-qPCR; the content of glutathione; the activation of the NLRP3 inflammasome and the content of IL-1ß and IL-10 in cardiac tissue. In exosomes isolated from plasma, we quantified NOX2 activity. Results: The infarct size after IR decreased from 40% in controls to 9% of the heart volume after RIPC. This protective effect was lost in the presence of both inhibitors. RIPC increased NOX2 activity in the heart and exosomes, as indicated by the increased association of p47phox to the membrane and by the increased oxidation rate of NADPH. RIPC also increased the mRNA of Nrf2 and antioxidant enzymes. Also, RIPC increased the content of glutathione and the GSH/GSSG ratio. The inflammasome proteins NLRP3, procaspase-1, and caspase-1 were all increased in the hearts of RIPC rats. At the end of RIPC protocol, IL-1ß increased in plasma but decreased in cardiac tissue. At the same time, IL-10 did not change in cardiac tissue but increased by 70% during the next 50 min of perfusion. Conclusion: RIPC activates NOX2 which upregulates the heart's antioxidant defenses and activates the NLRP3 inflammasome which stimulates a cardiac anti-inflammatory response. These changes may underlie the decrease in the infarct size induced by RIPC.

15.
Expert Opin Ther Targets ; 27(3): 207-223, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36880349

RESUMEN

INTRODUCTION: The vascular cell adhesion molecule (VCAM-1) is a transmembrane sialoglycoprotein detected in activated endothelial and vascular smooth muscle cells involved in the adhesion and transmigration of inflammatory cells into damaged tissue. Widely used as a pro-inflammatory marker, its potential role as a targeting molecule has not been thoroughly explored. AREAS COVERED: We discuss the current evidence supporting the potential targeting of VCAM-1 in atherosclerosis, diabetes, hypertension and ischemia/reperfusion injury. EXPERT OPINION: There is emerging evidence that VCAM-1 is more than a biomarker and may be a promising therapeutic target for vascular diseases. While there are neutralizing antibodies that allow preclinical research, the development of pharmacological tools to activate or inhibit this protein are required to thoroughly assess its therapeutic potential.


Asunto(s)
Aterosclerosis , Daño por Reperfusión , Humanos , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Endotelio Vascular
16.
Methods Cell Biol ; 176: 85-101, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37164544

RESUMEN

Cardiovascular diseases are the leading cause of death and disability worldwide. After heart injury triggered by myocardial ischemia or myocardial infarction, extensive zones of tissue are damaged and some of the tissue dies by necrosis and/or apoptosis. The loss of contractile mass activates a series of biochemical mechanisms that allow, through cardiac remodeling, the replacement of the dysfunctional heart tissue by fibrotic material. Our previous studies have shown that primary cilia, non-motile antenna-like structures at the cell surface required for the activation of specific signaling pathways, are present in cardiac fibroblasts and required for cardiac fibrosis induced by ischemia/reperfusion (I/R) in mice. I/R-induced myocardial fibrosis promotes the enrichment of ciliated cardiac fibroblasts where the myocardial injury occurs. Given discussions about the existence of cilia in specific cardiac cell types, as well as the functional relevance of studying cilia-dependent signaling in cardiac fibrosis after I/R, here we describe our methods to evaluate the presence and roles of primary cilia in cardiac fibrosis after I/R in mice.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Ratones , Animales , Cilios/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Corazón , Fibrosis , Miocitos Cardíacos/metabolismo , Miocardio
17.
Front Pharmacol ; 14: 1143888, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37050899

RESUMEN

Small extracellular vesicles are nanosized vesicles (30-200 nm) that can ferry proteins, nucleic acids, and lipids between cells and therefore, have significant potential as biomarkers, drug delivery tools or therapeutic agents. SEVs of endothelial origin have been shown to -among other functions-reduce in vitro ischemia/reperfusion (I/R) injury in cardiomyocytes, but whether a pro-inflammatory state of the endothelium impairs the functionality of these SEVs remains to be elucidated. To test this, human umbilical vein endothelial cells cells were treated with TNF-α 10 ng/mL and the expression of the pro-inflammatory parameters VCAM-1, ICAM-1 and eNOS were determined by Western blot. SEVs were isolated from endothelial cells treated with or without TNF-α 10 ng/mL using size exclusion chromatography. The size and concentration of SEVs was measured by Nanoparticle Tracking Analysis. The expression of the surface marker CD81 was determined by immunoassay, whereas their morphology was assessed by electron microscopy. The function of endothelial SEVs was assessed by evaluating their cardioprotective effect in an ex vivo model of global I/R using isolated hearts from adult C57BL/6 mice. Treatment of HUVECs with TNF-α induced the expression of VCAM-1 and ICAM-1, whereas eNOS levels were decreased. TNF-α did not affect the production, size, morphology, or expression of CD81. SEVs significantly reduced the infarct size as compared with untreated mice hearts, but SEVs isolated from TNF-α treated cells were unable to achieve this effect. Therefore, a pro-inflammatory state induced by TNF-α does not alter the production of endothelial SEVs but impairs their function in the setting of I/R injury.

18.
Front Cell Dev Biol ; 10: 946678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060801

RESUMEN

The complex physiology of eukaryotic cells requires that a variety of subcellular organelles perform unique tasks, even though they form highly dynamic communication networks. In the case of the endoplasmic reticulum (ER) and mitochondria, their functional coupling relies on the physical interaction between their membranes, mediated by domains known as mitochondria-ER contacts (MERCs). MERCs act as shuttles for calcium and lipid transfer between organelles, and for the nucleation of other subcellular processes. Of note, mounting evidence shows that they are heterogeneous structures, which display divergent behaviors depending on the cell type. Furthermore, MERCs are plastic structures that remodel according to intra- and extracellular cues, thereby adjusting the function of both organelles to the cellular needs. In consonance with this notion, the malfunction of MERCs reportedly contributes to the development of several age-related disorders. Here, we integrate current literature to describe how MERCs change, starting from undifferentiated cells, and their transit through specialization, malignant transformation (i.e., dedifferentiation), and aging/senescence. Along this journey, we will review the function of MERCs and their relevance for pivotal cell types, such as stem and cancer cells, cardiac, skeletal, and smooth myocytes, neurons, leukocytes, and hepatocytes, which intervene in the progression of chronic diseases related to age.

19.
Front Endocrinol (Lausanne) ; 13: 1057349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465616

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is one of the most complex and most prevalent cardiometabolic diseases in aging population. Age, obesity, diabetes, and hypertension are the main comorbidities of HFpEF. Microvascular dysfunction and vascular remodeling play a major role in its development. Among the many mechanisms involved in this process, vascular stiffening has been described as one the most prevalent during HFpEF, leading to ventricular-vascular uncoupling and mismatches in aged HFpEF patients. Aged blood vessels display an increased number of senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). This is consistent with the fact that EC and cardiomyocyte cell senescence has been reported during HFpEF. Autophagy plays a major role in VSMCs physiology, regulating phenotypic switch between contractile and synthetic phenotypes. It has also been described that autophagy can regulate arterial stiffening and EC and VSMC senescence. Many studies now support the notion that targeting autophagy would help with the treatment of many cardiovascular and metabolic diseases. In this review, we discuss the mechanisms involved in autophagy-mediated vascular senescence and whether this could be a driver in the development and progression of HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Células Endoteliales , Volumen Sistólico , Autofagia , Miocitos Cardíacos
20.
Cardiovasc Res ; 118(1): 282-294, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33386841

RESUMEN

AIMS: Genetic and pharmacological inhibition of mitochondrial fission induced by acute myocardial ischaemia/reperfusion injury (IRI) has been shown to reduce myocardial infarct size. The clinically used anti-hypertensive and heart failure medication, hydralazine, is known to have anti-oxidant and anti-apoptotic effects. Here, we investigated whether hydralazine confers acute cardioprotection by inhibiting Drp1-mediated mitochondrial fission. METHODS AND RESULTS: Pre-treatment with hydralazine was shown to inhibit both mitochondrial fission and mitochondrial membrane depolarisation induced by oxidative stress in HeLa cells. In mouse embryonic fibroblasts (MEFs), pre-treatment with hydralazine attenuated mitochondrial fission and cell death induced by oxidative stress, but this effect was absent in MEFs deficient in the mitochondrial fission protein, Drp1. Molecular docking and surface plasmon resonance studies demonstrated binding of hydralazine to the GTPase domain of the mitochondrial fission protein, Drp1 (KD 8.6±1.0 µM), and inhibition of Drp1 GTPase activity in a dose-dependent manner. In isolated adult murine cardiomyocytes subjected to simulated IRI, hydralazine inhibited mitochondrial fission, preserved mitochondrial fusion events, and reduced cardiomyocyte death (hydralazine 24.7±2.5% vs. control 34.1±1.5%, P=0.0012). In ex vivo perfused murine hearts subjected to acute IRI, pre-treatment with hydralazine reduced myocardial infarct size (as % left ventricle: hydralazine 29.6±6.5% vs. vehicle control 54.1±4.9%, P=0.0083), and in the murine heart subjected to in vivo IRI, the administration of hydralazine at reperfusion, decreased myocardial infarct size (as % area-at-risk: hydralazine 28.9±3.0% vs. vehicle control 58.2±3.8%, P<0.001). CONCLUSION: We show that, in addition to its antioxidant and anti-apoptotic effects, hydralazine, confers acute cardioprotection by inhibiting IRI-induced mitochondrial fission, raising the possibility of repurposing hydralazine as a novel cardioprotective therapy for improving post-infarction outcomes.


Asunto(s)
Dinaminas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Hidralazina/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Dinaminas/metabolismo , Femenino , Células HeLa , Humanos , Preparación de Corazón Aislado , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA