Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(4): 702-720.e17, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33789089

RESUMEN

Murine regulatory T (Treg) cells in tissues promote tissue homeostasis and regeneration. We sought to identify features that characterize human Treg cells with these functions in healthy tissues. Single-cell chromatin accessibility profiles of murine and human tissue Treg cells defined a conserved, microbiota-independent tissue-repair Treg signature with a prevailing footprint of the transcription factor BATF. This signature, combined with gene expression profiling and TCR fate mapping, identified a population of tissue-like Treg cells in human peripheral blood that expressed BATF, chemokine receptor CCR8 and HLA-DR. Human BATF+CCR8+ Treg cells from normal skin and adipose tissue shared features with nonlymphoid T follicular helper-like (Tfh-like) cells, and induction of a Tfh-like differentiation program in naive human Treg cells partially recapitulated tissue Treg regenerative characteristics, including wound healing potential. Human BATF+CCR8+ Treg cells from healthy tissue share features with tumor-resident Treg cells, highlighting the importance of understanding the context-specific functions of these cells.


Asunto(s)
Cromatina/inmunología , Linfocitos T Reguladores/inmunología , Cicatrización de Heridas/inmunología , Adulto , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Diferenciación Celular/inmunología , Línea Celular , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/inmunología , Células HaCaT , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Receptores CCR8/inmunología , Células T Auxiliares Foliculares/inmunología
2.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474314

RESUMEN

The application of a biocompatible polymer nanocarrier can provide target delivery to tumor tissues, improved pharmacokinetics, controlled drug release, etc. Therefore, the proposed strategy was to use the water-soluble star-like copolymers with a Dextran core and Poly(N-isopropylacrylamide) grafts (D-g-PNIPAM) for conjugation with the widely used chemotherapy drugs in oncology-Cisplatin (Cis-Pt) and Doxorubicin (Dox). The molecular characteristics of the copolymer were received using size-exclusion chromatography. The physicochemical characterization of the D-g-PNIPAM-Cis-Pt (or Dox) nanosystem was conducted using dynamic light scattering and FTIR spectroscopy. Using traditional biochemical methods, a comparative analysis of the enhancement of the cytotoxic effect of free Cis-Pt and Dox in combination with D-g-PNIPAM copolymers was performed in cancer cells of the Lewis lung carcinoma line, which are both sensitive and resistant to Dox; in addition, the mechanism of their action in vitro was evaluated.


Asunto(s)
Resinas Acrílicas , Antineoplásicos , Polímeros , Polímeros/química , Agua , Antineoplásicos/uso terapéutico , Doxorrubicina/química , Portadores de Fármacos/química , Micelas
3.
Molecules ; 29(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38998903

RESUMEN

The liver is the main organ responsible for the metabolism of ethanol, which suffers significantly as a result of tissue damage due to oxidative stress. It is known that C60 fullerenes are able to efficiently capture and inactivate reactive oxygen species in in vivo and in vitro systems. Therefore, the purpose of this study is to determine whether water-soluble C60 fullerene reduces the level of pathological process development in the liver of rats induced by chronic alcohol intoxication for 3, 6, and 9 months, depending on the daily dose (oral administration; 0.5, 1, and 2 mg/kg) of C60 fullerene throughout the experiment. In this context, the morphology of the C60 fullerene nanoparticles in aqueous solution was studied using atomic force microscopy. Such biochemical parameters of experimental animal blood as ALT (alanine aminotransferase), AST (aspartate aminotransferase), GGT (gamma-glutamyl transferase) and ALP (alkaline phosphatase) enzyme activities, CDT (carbohydrate-deficient transferrin) level, values of pro-antioxidant balance indicators (concentrations of H2O2 (hydrogen peroxide) and GSH (reduced glutathione), activities of CAT (catalase), SOD (superoxide dismutase) and GPx (selenium-dependent glutathione peroxidase)), and pathohistological and morphometric features of liver damage were analyzed. The most significant positive change in the studied biochemical parameters (up to 29 ± 2% relative to the control), as markers of liver damage, was recorded at the combined administration of alcohol (40% ethanol in drinking water) and water-soluble C60 fullerenes in the optimal dose of 1 mg/kg, which was confirmed by small histopathological changes in the liver of rats. The obtained results prove the prospective use of C60 fullerenes as powerful antioxidants for the mitigation of pathological conditions of the liver arising under prolonged alcohol intoxication.


Asunto(s)
Fulerenos , Hígado , Estrés Oxidativo , Animales , Fulerenos/farmacología , Ratas , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/farmacología , Intoxicación Alcohólica/tratamiento farmacológico , Intoxicación Alcohólica/metabolismo , Ratas Wistar , Nanopartículas/química , Etanol/toxicidad
4.
BMC Musculoskelet Disord ; 24(1): 606, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491190

RESUMEN

BACKGROUND: Being a scavenger of free radicals, C60 fullerenes can influence on the physiological processes in skeletal muscles, however, the effect of such carbon nanoparticles on muscle contractility under acute muscle inflammation remains unclear. Thus, the aim of the study was to reveal the effect of the C60 fullerene aqueous solution (C60FAS) on the muscle contractile properties under acute inflammatory pain. METHODS: To induce inflammation a 2.5% formalin solution was injected into the rat triceps surae (TS) muscle. High-frequency electrical stimulation has been used to induce tetanic muscle contraction. A linear motor under servo-control with embedded semi-conductor strain gauge resistors was used to measure the muscle tension. RESULTS: In response to formalin administration, the strength of TS muscle contractions in untreated animals was recorded at 23% of control values, whereas the muscle tension in the C60FAS-treated rats reached 48%. Thus, the treated muscle could generate 2-fold more muscle strength than the muscle in untreated rats. CONCLUSIONS: The attenuation of muscle contraction force reduction caused by preliminary injection of C60FAS is presumably associated with a decrease in the concentration of free radicals in the inflamed muscle tissue, which leads to a decrease in the intensity of nociceptive information transmission from the inflamed muscle to the CNS and thereby promotes the improvement of the functional state of the skeletal muscle.


Asunto(s)
Fulerenos , Ratas , Animales , Fulerenos/farmacología , Ratas Wistar , Agua , Músculo Esquelético , Contracción Muscular , Dolor/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Contracción Isométrica
5.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36674528

RESUMEN

The acoustic pressure waves of ultrasound (US) not only penetrate biological tissues deeper than light, but they also generate light emission, termed sonoluminescence. This promoted the idea of its use as an alternative energy source for photosensitizer excitation. Pristine C60 fullerene (C60), an excellent photosensitizer, was explored in the frame of cancer sonodynamic therapy (SDT). For that purpose, we analyzed C60 effects on human cervix carcinoma HeLa cells in combination with a low-intensity US treatment. The time-dependent accumulation of C60 in HeLa cells reached its maximum at 24 h (800 ± 66 ng/106 cells). Half of extranuclear C60 is localized within mitochondria. The efficiency of the C60 nanostructure's sonoexcitation with 1 MHz US was tested with cell-based assays. A significant proapoptotic sonotoxic effect of C60 was found for HeLa cells. C60's ability to induce apoptosis of carcinoma cells after sonoexcitation with US provides a promising novel approach for cancer treatment.


Asunto(s)
Carcinoma , Fulerenos , Fotoquimioterapia , Femenino , Humanos , Fármacos Fotosensibilizantes/farmacología , Fulerenos/farmacología , Células HeLa , Carcinoma/tratamiento farmacológico
6.
Cytokine ; 145: 155289, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32951968

RESUMEN

The clinical course and outcome of cutaneous leishmaniasis (CL) vary due to the infecting Leishmania species and host genetic makeup that result in different immune responses against the parasites. The host immune response to Leishmania aethiopica (L.aethiopica), the causative agent of CL in Ethiopia, is poorly understood. To contribute to the understanding of the protective immune response in CL due to L.aethiopica, we characterized the cytokine response to L. aethiopica in patients with the localized form of CL (LCL) and age-and sex-matched apparently healthy controls. By applying a whole blood based in vitro culture we found enhanced release of TNF, IL-6, MCP-1 or CCL2, IP-10 or CXCL10, MIP-1ß or CCL4 and IL-8 or CXCL8- but not of IL-10CL patients in response to L. aethiopica compared to the controls. No difference was observed between LCL cases and controls in the secretion of these cytokines and chemokines in whole blood cultures treated with the TLR-ligands LPS, MALP-2 or polyI: C. The observed increased secretion of the pro-inflammatory cytokines/chemokines reflects an enhanced response against the parasites by LCL patients as compared to healthy controls rather than a generally enhanced ability of blood leukocytes from LCL patients to respond to microbial constituents. Our findings suggest that the enhanced production of pro-inflammatory cytokines/chemokines is associated with localized cutaneous leishmaniasis caused by L.aethiopica.


Asunto(s)
Quimiocinas/inmunología , Citocinas/inmunología , Inflamación/inmunología , Leishmania/inmunología , Leishmaniasis Cutánea/inmunología , Etiopía , Humanos , Inmunidad/inmunología , Inflamación/parasitología , Leishmaniasis Cutánea/parasitología , Leucocitos/inmunología , Leucocitos/parasitología
7.
Cytokine ; 145: 155246, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32828639

RESUMEN

The likelihood of being bitten by sand flies infected with Leishmania (L.) donovani is considered to be high for all inhabitants living in the endemic areas, but only a small ratio of the population develop symptomatic visceral leishmanisis (VL). Since adequate activation of antimicrobial immune response plays a key role in control of pathogens early after infection we hypothesized that a dysfunction of essential cells of the immune system is associated with disease development after infection with L. donovani. In order to obtain insights into the capacity of leukocytes to respond to L. donovani, a whole blood based assay was applied to evaluate the production of cytokines and chemokines in clinical VL versus Ethiopian endemic healthy control (EHC). In response to L. donovani, VL blood cultures showed significantly lower secretion of IL-12p70, IL-6, IL-17, IL-8 and IP-10 compared to EHC. On the contrary, there was a significantly higher secretion of IL-10 observed in VL compared to EHC. In response to LPS also a lower IL-1ß, IL-12p70 and IL-6 secretion was observed in VL as compared to EHC. The data clearly indicate a diminished ability of blood leukocytes in VL to respond to L. donovani and to the TLR ligand LPS. This compromised response in VL may contribute to the severe disease development and enhanced susceptibility to secondary infections in VL.


Asunto(s)
Quimiocinas/inmunología , Citocinas/inmunología , Inflamación/inmunología , Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Adulto , Cultivo de Sangre/métodos , Estudios Transversales , Humanos , Sistema Inmunológico/inmunología , Inflamación/parasitología , Leishmaniasis Visceral/parasitología , Leucocitos/inmunología , Leucocitos/parasitología , Masculino
8.
Dermatology ; 237(2): 296-302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32344413

RESUMEN

BACKGROUND: Little information is available about the complexity and function of skin cells contributing to the high stability of tattoos. It has been shown that dermal macrophages play an important role in the storage and maintenance of pigment particles. By contrast, the impact of dermal fibroblasts, forming the connective tissue of the skin, on the stability of the tattoo is not known. METHOD: In this study, we compared the cell number and the particle load in dermal macrophages versus dermal fibroblasts, isolated from tail skin of tattooed mice. RESULTS: Microscopic analysis revealed that both cell populations contained the tattoo particles, although in largely different amounts. A small number of macrophages with high side scatter intensity contained a large quantity of pigment particles, whereas a high number of dermal fibroblasts harbored only a few pigment particles. Using the CD64dtr mouse model that allows for selective, diphtheria toxin-mediated depletion of macrophages, we have previously shown that macrophages hold the tattoo in place by capture-release and recapture cycles. In the tattooed skin of macrophage-depleted mice, the content of pigment particles in fibroblasts did not change; however, the total number of fibroblasts carrying particles increased. CONCLUSION: The present study demonstrates that dermal macrophages and fibroblasts contribute in different ways to the tattoo stability and further improves our knowledge on tattoo persistence.


Asunto(s)
Colorantes , Dermis/citología , Fibroblastos/fisiología , Macrófagos/fisiología , Tatuaje , Animales , Recuento de Células , Tinta , Ratones , Microscopía
9.
Adv Exp Med Biol ; 1352: 159-172, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35132600

RESUMEN

INTRODUCTION: The emergence of a new member of the Coronaviridae family, which caused the 2020 pandemic, requires detailed research on the evolution of coronaviruses, their structure and properties, and interaction with cells. Modern nanobiotechnologies can address the many clinical challenges posed by the COVID-19 pandemic. In particular, they offer new therapeutic approaches using biocompatible nanostructures with "specific" antiviral activity. Therefore, the nanosized spherical-like molecule (0.72 nm in diameter) composed of 60 carbon atoms, C60 fullerene, is of interest in terms of fighting coronaviruses due to its high biological activity. In here, we aim to evaluate the effectiveness of anticoronavirus action of water-soluble pristine C60 fullerene in the model and in vitro systems. As a model, apathogenic for human coronavirus, we used transmissible gastroenteritis virus of swine (TGEV), which we adapted to the BHK-21 cell culture (kidney cells of a newborn Syrian hamster). METHODS: The shape and size of the particles present in C60 fullerene aqueous colloidal solution (C60FAS) of given concentration, as well as C60FAS stability (value of zeta potential) were studied using microscopic (STM, scanning tunneling microscopy, and AFM, atomic force microscopy) and spectroscopic (DLS, dynamic light scattering) methods. The cytopathic effect of TGEV was determined with the help of a Leica DM 750 microscope and the degree of monolayer changes in cells was assessed. The microscopy of the viral suspension was performed using a high resolution transmission electron microscope (HRTEM; JEM-1230, Japan). Finally, the search for and design of optimal possible complexes between C60 fullerene and target proteins in the structure of SARS-CoV-2 coronavirus, evaluation of their stability in the simulated cellular environment were performed using molecular dynamics and docking methods. RESULTS: It was found that the maximum allowable cytotoxic concentration of C60 fullerene is 37.5 ± 3.0 µg/ml. The investigated C60FAS reduces the titer of coronavirus infectious activity by the value of 2.00 ± 0.08 TCID50/ml. It was shown that C60 fullerene interacts directly with SARS-CoV-2 proteins, such as RdRp (RNA-dependent RNA polymerase) and 3CLpro (3-chymotrypsin-like protease), which is critical for the life cycle of the coronavirus and, thus, inhibits its functional activity. In both cases, C60 fullerene fills the binding pocket and gets stuck there through stacking and steric interactions. CONCLUSION: Pioneer in vitro study to identify the anticoronavirus activity of water-soluble pristine C60 fullerenes indicates that they are highly promising for further preclinical studies, since a significant inhibition of the infectious activity of swine coronavirus of transmissible gastroenteritis in BHK-21 cell culture was found. According to molecular modeling results, it was shown that C60 fullerene can create the stable complexes with 3CLpro and RdRp proteins of SARS-CoV-2 coronavirus and, thus, suppress its functional activity.


Asunto(s)
COVID-19 , Fulerenos , Animales , Fulerenos/farmacología , Humanos , Pandemias , SARS-CoV-2 , Porcinos , Agua
10.
Int J Mol Sci ; 22(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067082

RESUMEN

The widespread use of glyphosate as a herbicide in agriculture can lead to the presence of its residues and metabolites in food for human consumption and thus pose a threat to human health. It has been found that glyphosate reduces energy metabolism in the brain, its amount increases in white muscle fibers. At the same time, the effect of chronic use of glyphosate on the dynamic properties of skeletal muscles remains practically unexplored. The selected biomechanical parameters (the integrated power of muscle contraction, the time of reaching the muscle contraction force its maximum value and the reduction of the force response by 50% and 25% of the initial values during stimulation) of muscle soleus contraction in rats, as well as blood biochemical parameters (the levels of creatinine, creatine phosphokinase, lactate, lactate dehydrogenase, thiobarbituric acid reactive substances, hydrogen peroxide, reduced glutathione and catalase) were analyzed after chronic glyphosate intoxication (oral administration at a dose of 10 µg/kg of animal weight) for 30 days. Water-soluble C60 fullerene, as a poweful antioxidant, was used as a therapeutic nanoagent throughout the entire period of intoxication with the above herbicide (oral administration at doses of 0.5 or 1 mg/kg). The data obtained show that the introduction of C60 fullerene at a dose of 0.5 mg/kg reduces the degree of pathological changes by 40-45%. Increasing the dose of C60 fullerene to 1 mg/kg increases the therapeutic effect by 55-65%, normalizing the studied biomechanical and biochemical parameters. Thus, C60 fullerenes can be effective nanotherapeutics in the treatment of glyphosate-based herbicide poisoning.


Asunto(s)
Fulerenos/uso terapéutico , Glicina/análogos & derivados , Contracción Muscular/fisiología , Músculo Esquelético/fisiopatología , Animales , Antioxidantes/metabolismo , Biomarcadores/sangre , Fenómenos Biomecánicos/efectos de los fármacos , Catalasa/sangre , Glutatión/sangre , Glicina/toxicidad , Peróxido de Hidrógeno/sangre , Contracción Muscular/efectos de los fármacos , Ratas , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Glifosato
11.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202899

RESUMEN

The biomechanical parameters of muscle soleus contraction in rats and their blood biochemical indicators after the intramuscular administration of water-soluble C60 fullerene at doses of 0.5, 1, and 2 mg/kg 1 h before the onset of muscle ischemia were investigated. In particular, changes in the contraction force of the ischemic muscle soleus, the integrated power of the muscle, the time to achieve the maximum force response, the dynamics of fatigue processes, and the parameters of the transition from dentate to smooth tetanus, levels of creatinine, creatine kinase, lactate and lactate dehydrogenase, and parameters of prooxidant-antioxidant balance (thiobarbituric acid reactive substances, hydrogen peroxide, and reduced glutathione and catalase) were analyzed. The positive therapeutic changes in the studied biomechanical and biochemical markers were revealed, which indicate the possibility of using water-soluble C60 fullerenes as effective prophylactic nanoagents to reduce the severity of pathological conditions of the muscular system caused by ischemic damage to skeletal muscles.


Asunto(s)
Materiales Biocompatibles/química , Fulerenos/química , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/patología , Nanopartículas/química , Sustancias Protectoras/química , Animales , Materiales Biocompatibles/farmacología , Biomarcadores/sangre , Fenómenos Biomecánicos , Fenómenos Químicos , Modelos Animales de Enfermedad , Contracción Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Ratas , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/etiología , Daño por Reperfusión/patología
12.
Mol Pharm ; 17(9): 3622-3632, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32673486

RESUMEN

Background: C60 fullerenes and their derivatives are actively investigated for the use in neuroscience. Applications of these nanoscale materials require the examination of their interaction with different neural cells, especially with microglia, because these cells, like other tissue resident phagocytes, are the earliest and most sensitive responders to nanoparticles. The aim of this study was to investigate the effect of C60 fullerene and its nanocomplex with doxorubicin (Dox) on the metabolic profile of brain-resident phagocytes-microglia-in vitro. Methods: Resting microglial cells from adult male Wistar rats were used in experiments. Potential C60 fullerene targets in microglial cells were studied by computer simulation. Microglia oxidative metabolism and phagocytic activity were examined by flow cytometry. Griess reaction and arginase activity colorimetric assay were used to explore arginine metabolism. Results: C60 fullerene when used alone did not influence microglia oxidative metabolism and phagocytic activity but shifted arginine metabolism toward the decrease of NO generation. Complexation of C60 fullerene with Dox (C60-Dox) potentiated the ability of the latter to stimulate NO generation. Conclusion: The capability of C60 fullerenes used alone to cause anti-inflammatory shift of microglia arginine metabolism makes them a promising agent for the correction of neuroinflammatory processes involved in neurodegeneration. The potentiating action of C60 fullerene on the immunomodulatory effect of Dox allows us to consider the C60 molecule as an attractive vehicle for this antitumor agent.


Asunto(s)
Doxorrubicina/química , Doxorrubicina/farmacología , Fulerenos/química , Metaboloma/efectos de los fármacos , Microglía/efectos de los fármacos , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Masculino , Microglía/metabolismo , Nanopartículas/química , Ratas , Ratas Wistar
13.
Dig Dis Sci ; 65(1): 215-224, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31312992

RESUMEN

BACKGROUND: A significant role in pathogenesis of cholangitis is attributed to excessive reactive oxygen species production and oxidative stress. Therefore, antioxidants could be promising therapeutics. AIMS: The effects of powerful free radical scavenger C60 fullerene on hepatic and pancreatic manifestations of acute and chronic cholangitis in rats were aimed to be discovered. METHODS: Acute (AC, 3 days) and chronic (CC, 28 days) cholangitis models were simulated by single (AC) and 4 weekly (CC) α-naphthylisothiocyanate per os administrations. Pristine C60 fullerene aqueous colloid solution (C60FAS, 0.15 mg/ml, size of aggregates 1.2-100 nm) was administered either per os or intraperitoneally at a dose of 0.5 mg/kg C60 fullerene daily (AC) and every other day (CC). Prednisolone was used as a reference. Liver and pancreas autopsies were analyzed, and blood serum biochemical markers were measured. Pan-cytokeratin expression in HepG2 cells was assessed after 48-h incubation with C60FAS. RESULTS: On AC, C60FAS normalized elevated bilirubin, alkaline phosphatase, and triglycerides, diminished fibrotic alterations in liver, and improved pancreas state when applied by both ways. Additionally, C60FAS per os significantly reduced the signs of inflammation in liver and pancreas. On CC, C60FAS also mitigated liver fibrosis and inflammation, improved pancreas state, and normalized alkaline phosphatase and triglycerides. The remedy effect of C60FAS was more expressed compared to that of prednisolone on both models. Furthermore, C60FAS inhibited pan-cytokeratin expression in HepG2 cells in a dose-dependent manner. CONCLUSION: Pristine C60 fullerene inhibits liver inflammation and fibrogenesis and partially improved liver and pancreas state under acute and chronic cholangitis.


Asunto(s)
Antiinflamatorios/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Colangitis/tratamiento farmacológico , Fulerenos/farmacología , Cirrosis Hepática/prevención & control , Hígado/efectos de los fármacos , Páncreas/efectos de los fármacos , Enfermedades Pancreáticas/prevención & control , 1-Naftilisotiocianato , Animales , Biomarcadores/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Colangitis/sangre , Colangitis/inducido químicamente , Colangitis/patología , Modelos Animales de Enfermedad , Depuradores de Radicales Libres/farmacología , Células Hep G2 , Humanos , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/sangre , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Masculino , Páncreas/metabolismo , Páncreas/patología , Enfermedades Pancreáticas/sangre , Enfermedades Pancreáticas/inducido químicamente , Enfermedades Pancreáticas/patología , Prednisolona/farmacología , Ratas Wistar , Factores de Tiempo
14.
Arch Toxicol ; 93(5): 1213-1226, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30989314

RESUMEN

Cisplatin (Cis-Pt) is the cytotoxic agent widely used against tumors of various origin, but its therapeutic efficiency is substantially limited by a non-selective effect and high toxicity. Conjugation of Cis-Pt with nanocarriers is thought to be one option to enable drug targeting. The aim of this study was to estimate toxic effects of the nanocomplex formed by noncovalent interaction of C60 fullerene with Cis-Pt against Lewis lung carcinoma (LLC) cells in comparison with free drug. Scanning tunneling microscopy showed that the minimum size of C60-Cis-Pt nanoparticles in aqueous colloid solution was 1.1 nm whereas that of C60 fullerene was 0.72 nm, thus confirming formation of the nanocomplex. The cytotoxic effect of C60-Cis-Pt nanocomplex against LLC cells was shown to be higher with IC50 values 3.3 and 4.5 times lower at 48 h and 72 h, respectively, as compared to the free drug. 12.5 µM Cis-Pt had no effect on LLC cell viability and morphology while C60-Cis-Pt nanocomplex in Cis-Pt-equivalent concentration substantially decreased the cell viability, impaired their shape and adhesion, inhibited migration and induced accumulation in proapoptotic subG1 phase. Apoptosis induced by the C60-Cis-Pt nanocomplex was confirmed by caspase 3/7 activation and externalization of phosphatidylserine on the outer surface of LLC cells with the double Annexin V-FITC/PI staining. We assume that C60 fullerene as a component of the C60-Cis-Pt nanocomplex promoted Cis-Pt entry and intracellular accumulation thus contributing to intensification of the drug's toxic effect against lung cancer cells.


Asunto(s)
Antineoplásicos/administración & dosificación , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Cisplatino/administración & dosificación , Fulerenos/química , Animales , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Cisplatino/toxicidad , Concentración 50 Inhibidora , Ratones , Nanopartículas , Tamaño de la Partícula , Factores de Tiempo
15.
Nanomedicine ; 19: 1-11, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30981819

RESUMEN

Possessing unique physical and chemical properties, C60 fullerenes are arising as a potential nanotechnological tool that can strongly affect various biological processes. Recent molecular modeling studies have shown that C60 fullerenes can interact with ion channels, but there is lack of data about possible effects of C60 molecule on ion channels expressed in smooth muscle cells (SMC). Here we show both computationally and experimentally that water-soluble pristine C60 fullerene strongly inhibits the large conductance Ca2+-dependent K+ (BKCa), but not voltage-gated K+ (Kv) channels in pulmonary artery SMC. Both molecular docking simulations and analysis of single channel activity indicate that C60 fullerene blocks BKCa channel pore in its open state. In functional tests, C60 fullerene enhanced phenylephrine-induced contraction of pulmonary artery rings by about 25% and reduced endothelium-dependent acetylcholine-induced relaxation by up to 40%. These findings suggest a novel strategy for biomedical application of water-soluble pristine C60 fullerene in vascular dysfunction.


Asunto(s)
Fulerenos/farmacología , Proteínas de Interacción con los Canales Kv/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/citología , Animales , Dispersión Dinámica de Luz , Humanos , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratones Endogámicos BALB C , Simulación del Acoplamiento Molecular , Contracción Muscular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Ratas Wistar
16.
Glia ; 66(11): 2438-2455, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30357946

RESUMEN

Mutations and activation of the PI3K signaling pathway in breast cancer cells have been linked to brain metastases. However, here we describe that in some breast cancer brain metastases samples the protein expression of PI3K signaling components is restricted to the metastatic microenvironment. In contrast to the therapeutic effects of PI3K inhibition on the breast cancer cells, the reaction of the brain microenvironment is less understood. Therefore we aimed to quantify the PI3K pathway activity in breast cancer brain metastasis and investigate the effects of PI3K inhibition on the central nervous system (CNS) microenvironment. First, to systematically quantify the PI3K pathway activity in breast cancer brain metastases, we performed a prospective biomarker study using a reverse phase protein array (RPPA). The majority, namely 30 out of 48 (62.5%) brain metastatic tissues examined, revealed high PI3K signaling activity that was associated with a median overall survival (OS) of 9.41 months, while that of patients, whose brain metastases showed only moderate or low PI3K activity, amounted to only 1.93 and 6.71 months, respectively. Second, we identified PI3K as a master regulator of metastasis-promoting macrophages/microglia during CNS colonization; and treatment with buparlisib (BKM120), a pan-PI3K Class I inhibitor with a good blood-brain-barrier penetrance, reduced their metastasis-promoting features. In conclusion, PI3K signaling is active in the majority of breast cancer brain metastases. Since PI3K inhibition does not only affect the metastatic cells but also re-educates the metastasis-promoting macrophages/microglia, PI3K inhibition may hold considerable promise in the treatment of brain metastasis and the respective microenvironment.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica/fisiología , Macrófagos/enzimología , Microglía/enzimología , Adulto , Anciano , Aminopiridinas/uso terapéutico , Animales , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Persona de Mediana Edad , Morfolinas/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
17.
Int J Obes (Lond) ; 42(12): 1987-1998, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30401827

RESUMEN

BACKGROUND: Obesity is a growing global health problem. Since increased oxidative stress is one of the key pathological mechanisms underpinning overweight and strongly correlates with progression of obesity-related complications we hypothesized that C60 fullerene nanoparticles, due to their strong antioxidant capacity, could be the promising therapeutic agent in the treatment of this disease. Here we investigated whether the C60 fullerenes can alleviate diet-induced obesity (DIO) and metabolic impairments associated with it. METHODS: To determine the effect of C60 fullerenes on some nutritional and metabolic parameters, rats were fed either a normal diet (6.7% fat, 15.27 kJ·g-1) or a high-fat diet (38.8% fat, 28.71 kJ·g-1) for 70 days and were simultaneously treated per os with pristine C60 fullerene aqueous solution (C60FAS; 0.3 mg·kg-1 every other day) since the 28th day from the start of the experiment. RESULTS: Rats fed with high fat diet had significantly increased body mass index (BMI), levels of insulin, glucose, glycosilated hemoglobin (HbA1c) and serum pro-inflammatory cytokines compared with control rats fed with low-fat chow. C60 fullerenes normalized the metabolic parameters and partially reduced BMI in DIO animals. Pro-inflammatory cytokines (IL-1b, IL-12, INFγ) were also decreased in serum of DIO rats treated with C60 fullerenes while anti-inflammatory cytokines (IL-4, IL-10) were at the control levels. High fat diet caused the increased level of oxidative stress products, and this was accompanied by decreased activity both the superoxide dismutase and catalase, whereas the administration of C60 fullerenes markedly decreased level of oxidative stress and enhanced antioxidant enzyme activities. CONCLUSION: These data indicate that water-soluble pristine C60 fullerenes reduce chronic inflammation, restore glucose homeostasis as well as positively affects on prooxidant-antioxidant homeostasis. C60 fullerenes could be represented as a promising therapeutic agent in the treatment of obesity and its related complications.


Asunto(s)
Antioxidantes/farmacología , Peso Corporal/efectos de los fármacos , Fulerenos/farmacología , Obesidad/metabolismo , Animales , Glucemia/efectos de los fármacos , Citocinas/sangre , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
18.
J Immunol ; 197(10): 4034-4041, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27798163

RESUMEN

Hypoxia-inducible factor-1α (HIF-1α), which accumulates in mammalian host organisms during infection, supports the defense against microbial pathogens. However, whether and to what extent HIF-1α expressed by myeloid cells contributes to the innate immune response against Leishmania major parasites is unknown. We observed that Leishmania-infected humans and L. major-infected C57BL/6 mice exhibited substantial amounts of HIF-1α in acute cutaneous lesions. In vitro, HIF-1α was required for leishmanicidal activity and high-level NO production by IFN-γ/LPS-activated macrophages. Mice deficient for HIF-1α in their myeloid cell compartment had a more severe clinical course of infection and increased parasite burden in the skin lesions compared with wild-type controls. These findings were paralleled by reduced expression of type 2 NO synthase by lesional CD11b+ cells. Together, these data illustrate that HIF-1α is required for optimal innate leishmanicidal immune responses and, thereby, contributes to the cure of cutaneous leishmaniasis.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Leishmania major/inmunología , Leishmaniasis Cutánea/inmunología , Células Mieloides/metabolismo , Piel/parasitología , Animales , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inmunidad Innata , Interferón gamma/farmacología , Leishmaniasis Cutánea/parasitología , Leishmaniasis Cutánea/patología , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/parasitología , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa/genética , Carga de Parásitos , Piel/patología
19.
J Nanobiotechnology ; 15(1): 8, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-28086894

RESUMEN

BACKGROUND: Bioactive soluble carbon nanostructures, such as the C60 fullerene can bond with up to six electrons, thus serving by a powerful scavenger of reactive oxygen species similarly to many natural antioxidants, widely used to decrease the muscle fatigue effects. The aim of the study is to define action of the pristine C60 fullerene aqueous colloid solution (C60FAS), on the post-fatigue recovering of m. triceps surae in anaesthetized rats. RESULTS: During fatigue development, we observed decrease in the muscle effort level before C60FAS administration. After the application of C60FAS, a slower effort decrease, followed by the prolonged retention of a certain level, was recorded. An analysis of the metabolic process changes accompanying muscle fatigue showed an increase in the oxidative stress markers H 2 O 2 (hydrogen peroxide) and TBARS (thiobarbituric acid reactive substances) in relation to the intact muscles. After C60FAS administration, the TBARS content and H 2 O 2 level were decreased. The endogenous antioxidant system demonstrated a similar effect because the GSH (reduced glutathione) in the muscles and the CAT (catalase) enzyme activity were increased during fatigue. CONCLUSIONS: C60FAS leads to reduction in the recovery time of the muscle contraction force and to increase in the time of active muscle functioning before appearance of steady fatigue effects. Therefore, it is possible that C60FAS affects the prooxidant-antioxidant muscle tissue homeostasis, subsequently increasing muscle endurance.


Asunto(s)
Antioxidantes/uso terapéutico , Fulerenos/uso terapéutico , Fatiga Muscular , Músculo Esquelético/efectos de los fármacos , Animales , Antioxidantes/administración & dosificación , Fulerenos/administración & dosificación , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Inyecciones Intramusculares , Masculino , Contracción Muscular , Nanopartículas/administración & dosificación , Nanopartículas/química , Estrés Oxidativo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
20.
J Immunol ; 193(5): 2600-8, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25057005

RESUMEN

Administering immunoregulatory cells to patients as medicinal agents is a potentially revolutionary approach to the treatment of immunologically mediated diseases. Presently, there are no satisfactory, clinically applicable methods of tracking human cells in patients with adequate spatial resolution and target cell specificity over a sufficient period of time. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) represents a potential solution to the problem of detecting very rare cells in tissues. In this article, this exquisitely sensitive technique is applied to the tracking of gold-labeled human regulatory macrophages (Mregs) in immunodeficient mice. Optimal conditions for labeling Mregs with 50-nm gold particles were investigated by exposing Mregs in culture to variable concentrations of label: Mregs incubated with 3.5 × 10(9) particles/ml for 1 h incorporated an average of 3.39 × 10(8) Au atoms/cell without loss of cell viability. Analysis of single, gold-labeled Mregs by LA-ICP-MS registered an average of 1.9 × 10(5) counts/cell. Under these conditions, 100% labeling efficiency was achieved, and label was retained by Mregs for ≥36 h. Gold-labeled Mregs adhered to glass surfaces; after 24 h of culture, it was possible to colabel these cells with human-specific (154)Sm-tagged anti-HLA-DR or (174)Yb-tagged anti-CD45 mAbs. Following injection into immunodeficient mice, signals from gold-labeled human Mregs could be detected in mouse lung, liver, and spleen for at least 7 d by solution-based inductively coupled plasma mass spectrometry and LA-ICP-MS. These promising results indicate that LA-ICP-MS tissue imaging has great potential as an analytical technique in immunology.


Asunto(s)
Oro/farmacología , Rayos Láser , Antígenos Comunes de Leucocito/inmunología , Pulmón , Espectrometría de Masas/instrumentación , Monocitos , Animales , Anticuerpos Monoclonales de Origen Murino , Xenoinjertos , Humanos , Antígenos Comunes de Leucocito/química , Pulmón/citología , Pulmón/inmunología , Ratones , Ratones Endogámicos NOD , Monocitos/citología , Monocitos/inmunología , Monocitos/trasplante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA