RESUMEN
Epidemiological studies reveal that marijuana increases the risk of cardiovascular disease (CVD); however, little is known about the mechanism. Δ9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, binds to cannabinoid receptor 1 (CB1/CNR1) in the vasculature and is implicated in CVD. A UK Biobank analysis found that cannabis was an risk factor for CVD. We found that marijuana smoking activated inflammatory cytokines implicated in CVD. In silico virtual screening identified genistein, a soybean isoflavone, as a putative CB1 antagonist. Human-induced pluripotent stem cell-derived endothelial cells were used to model Δ9-THC-induced inflammation and oxidative stress via NF-κB signaling. Knockdown of the CB1 receptor with siRNA, CRISPR interference, and genistein attenuated the effects of Δ9-THC. In mice, genistein blocked Δ9-THC-induced endothelial dysfunction in wire myograph, reduced atherosclerotic plaque, and had minimal penetration of the central nervous system. Genistein is a CB1 antagonist that attenuates Δ9-THC-induced atherosclerosis.
Asunto(s)
Cannabis , Enfermedades Cardiovasculares , Alucinógenos , Analgésicos , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Dronabinol/farmacología , Células Endoteliales , Genisteína/farmacología , Genisteína/uso terapéutico , Inflamación/tratamiento farmacológico , Ratones , Receptor Cannabinoide CB1 , Receptores de CannabinoidesRESUMEN
Genome-wide association studies using large-scale genome and exome sequencing data have become increasingly valuable in identifying associations between genetic variants and disease, transforming basic research and translational medicine. However, this progress has not been equally shared across all people and conditions, in part due to limited resources. Leveraging publicly available sequencing data as external common controls, rather than sequencing new controls for every study, can better allocate resources by augmenting control sample sizes or providing controls where none existed. However, common control studies must be carefully planned and executed as even small differences in sample ascertainment and processing can result in substantial bias. Here, we discuss challenges and opportunities for the robust use of common controls in high-throughput sequencing studies, including study design, quality control and statistical approaches. Thoughtful generation and use of large and valuable genetic sequencing data sets will enable investigation of a broader and more representative set of conditions, environments and genetic ancestries than otherwise possible.
Asunto(s)
Exoma , Estudio de Asociación del Genoma Completo , Exoma/genética , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Secuenciación del ExomaRESUMEN
Polygenic risk scores (PRSs) quantify the contribution of multiple genetic loci to an individual's likelihood of a complex trait or disease. However, existing PRSs estimate this likelihood with common genetic variants, excluding the impact of rare variants. Here, we report on a method to identify rare variants associated with outlier gene expression and integrate their impact into PRS predictions for body mass index (BMI), obesity, and bariatric surgery. Between the top and bottom 10%, we observed a 20.8% increase in risk for obesity (p = 3 × 10-14), 62.3% increase in risk for severe obesity (p = 1 × 10-6), and median 5.29 years earlier onset for bariatric surgery (p = 0.008), as a function of expression outlier-associated rare variant burden when controlling for common variant PRS. We show that these predictions were more significant than integrating the effects of rare protein-truncating variants (PTVs), observing a mean 19% increase in phenotypic variance explained with expression outlier-associated rare variants when compared with PTVs (p = 2 × 10-15). We replicated these findings by using data from the Million Veteran Program and demonstrated that PRSs across multiple traits and diseases can benefit from the inclusion of expression outlier-associated rare variants identified through population-scale transcriptome sequencing.
Asunto(s)
Herencia Multifactorial , Obesidad , Índice de Masa Corporal , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética , Obesidad/genética , Fenotipo , Factores de RiesgoRESUMEN
We present a systematic assessment of polygenic risk score (PRS) prediction across more than 1,500 traits using genetic and phenotype data in the UK Biobank. We report 813 sparse PRS models with significant (p < 2.5 x 10-5) incremental predictive performance when compared against the covariate-only model that considers age, sex, types of genotyping arrays, and the principal component loadings of genotypes. We report a significant correlation between the number of genetic variants selected in the sparse PRS model and the incremental predictive performance (Spearman's â´ = 0.61, p = 2.2 x 10-59 for quantitative traits, â´ = 0.21, p = 9.6 x 10-4 for binary traits). The sparse PRS model trained on European individuals showed limited transferability when evaluated on non-European individuals in the UK Biobank. We provide the PRS model weights on the Global Biobank Engine (https://biobankengine.stanford.edu/prs).
Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Bancos de Muestras Biológicas , Predisposición Genética a la Enfermedad , Humanos , Herencia Multifactorial/genética , Fenotipo , Factores de Riesgo , Reino UnidoRESUMEN
Precise interpretation of the effects of rare protein-truncating variants (PTVs) is important for accurate determination of variant impact. Current methods for assessing the ability of PTVs to induce nonsense-mediated decay (NMD) focus primarily on the position of the variant in the transcript. We used RNA sequencing of the Genotype Tissue Expression v.8 cohort to compute the efficiency of NMD using allelic imbalance for 2,320 rare (genome aggregation database minor allele frequency ≤ 1%) PTVs across 809 individuals in 49 tissues. We created an interpretable predictive model using penalized logistic regression in order to evaluate the comprehensive influence of variant annotation, tissue, and inter-individual variation on NMD. We found that variant position, allele frequency, the inclusion of ultra-rare and singleton variants, and conservation were predictive of allelic imbalance. Furthermore, we found that NMD effects were highly concordant across tissues and individuals. Due to this high consistency, we demonstrate in silico that utilizing peripheral tissues or cell lines provides accurate prediction of NMD for PTVs.
Asunto(s)
Codón sin Sentido/genética , Regulación de la Expresión Génica , Enfermedades Genéticas Congénitas/patología , Variación Genética , Mutación , Degradación de ARNm Mediada por Codón sin Sentido , ARN Mensajero/genética , Frecuencia de los Genes , Enfermedades Genéticas Congénitas/genética , HumanosRESUMEN
Whole-genome sequencing studies applied to large populations or biobanks with extensive phenotyping raise new analytic challenges. The need to consider many variants at a locus or group of genes simultaneously and the potential to study many correlated phenotypes with shared genetic architecture provide opportunities for discovery not addressed by the traditional one variant, one phenotype association study. Here, we introduce a Bayesian model comparison approach called MRP (multiple rare variants and phenotypes) for rare-variant association studies that considers correlation, scale, and direction of genetic effects across a group of genetic variants, phenotypes, and studies, requiring only summary statistic data. We apply our method to exome sequencing data (n = 184,698) across 2,019 traits from the UK Biobank, aggregating signals in genes. MRP demonstrates an ability to recover signals such as associations between PCSK9 and LDL cholesterol levels. We additionally find MRP effective in conducting meta-analyses in exome data. Non-biomarker findings include associations between MC1R and red hair color and skin color, IL17RA and monocyte count, and IQGAP2 and mean platelet volume. Finally, we apply MRP in a multi-phenotype setting; after clustering the 35 biomarker phenotypes based on genetic correlation estimates, we find that joint analysis of these phenotypes results in substantial power gains for gene-trait associations, such as in TNFRSF13B in one of the clusters containing diabetes- and lipid-related traits. Overall, we show that the MRP model comparison approach improves upon useful features from widely used meta-analysis approaches for rare-variant association analyses and prioritizes protective modifiers of disease risk.
Asunto(s)
Variación Genética , Estudio de Asociación del Genoma Completo , Modelos Genéticos , Teorema de Bayes , Femenino , Humanos , Masculino , FenotipoRESUMEN
This corrects the article DOI: 10.1038/nature24265.
RESUMEN
Background: Patients with chronic lung disease (CLD), such as asthma or chronic obstructive pulmonary disease, were expected to have an increased risk of clinical manifestations and severity of COVID-19. However, these comorbidities have been reported less frequently than expected. Chronic treatment with inhaled corticosteroids (ICS) may impact the clinical course of COVID-19. The main objective of this study is to know the influence of chronic treatment with ICS on the prognosis of COVID-19 hospitalized patients with CLD. Methods: A multicenter retrospective cohort study was designed, including patients hospitalized with COVID-19. Epidemiological and clinical data were collected at admission and at seven days, and clinical outcomes were collected. Patients with CLD with and without chronic treatment with ICS were compared. Results: Two thousand five hundred ninety-eight patients were included, of which 1,171 patients had a diagnosis of asthma and 1,427 of COPD (53.37% and 41.41% with ICS, respectively). No differences were found in mortality, transfer to ICU, or development of moderate-severe ARDS. Patients with chronic ICS had a longer hospital stay in both asthma and COPD patients (9 vs. 8 days, p = 0.031 in asthma patients), (11 vs. 9 days, p = 0.018 in COPD patients); although they also had more comorbidity burden. Conclusions: Patients with chronic inhaled corticosteroids had longer hospital stays and more chronic comorbidities, measured by the Charlson comorbidity index, but they did not have more severe disease at admission, evaluated with qSOFA and PSI scores. Chronic treatment with inhaled corticosteroids had no influence on the prognosis of patients with chronic lung disease and COVID-19.
RESUMEN
Population-scale biobanks that combine genetic data and high-dimensional phenotyping for a large number of participants provide an exciting opportunity to perform genome-wide association studies (GWAS) to identify genetic variants associated with diverse quantitative traits and diseases. A major challenge for GWAS in population biobanks is ascertaining disease cases from heterogeneous data sources such as hospital records, digital questionnaire responses, or interviews. In this study, we use genetic parameters, including genetic correlation, to evaluate whether GWAS performed using cases in the UK Biobank ascertained from hospital records, questionnaire responses, and family history of disease implicate similar disease genetics across a range of effect sizes. We find that hospital record and questionnaire GWAS largely identify similar genetic effects for many complex phenotypes and that combining together both phenotyping methods improves power to detect genetic associations. We also show that family history GWAS using cases ascertained on family history of disease agrees with combined hospital record and questionnaire GWAS and that family history GWAS has better power to detect genetic associations for some phenotypes. Overall, this work demonstrates that digital phenotyping and unstructured phenotype data can be combined with structured data such as hospital records to identify cases for GWAS in biobanks and improve the ability of such studies to identify genetic associations.
Asunto(s)
Enfermedad/genética , Estudio de Asociación del Genoma Completo , Fenotipo , Asma/genética , Bases de Datos Factuales , Femenino , Genética Médica , Genotipo , Humanos , Masculino , Neoplasias/genética , Reino UnidoRESUMEN
We develop a scalable and highly efficient algorithm to fit a Cox proportional hazard model by maximizing the $L^1$-regularized (Lasso) partial likelihood function, based on the Batch Screening Iterative Lasso (BASIL) method developed in Qian and others (2019). Our algorithm is particularly suitable for large-scale and high-dimensional data that do not fit in the memory. The output of our algorithm is the full Lasso path, the parameter estimates at all predefined regularization parameters, as well as their validation accuracy measured using the concordance index (C-index) or the validation deviance. To demonstrate the effectiveness of our algorithm, we analyze a large genotype-survival time dataset across 306 disease outcomes from the UK Biobank (Sudlow and others, 2015). We provide a publicly available implementation of the proposed approach for genetics data on top of the PLINK2 package and name it snpnet-Cox.
Asunto(s)
Algoritmos , Bancos de Muestras Biológicas , Humanos , Funciones de Verosimilitud , Modelos de Riesgos Proporcionales , Reino UnidoRESUMEN
BACKGROUND: Real-world observational data are an important source of evidence on the treatment effectiveness for patients hospitalized with coronavirus disease 2019 (COVID-19). However, observational studies evaluating treatment effectiveness based on longitudinal data are often prone to methodological biases such as immortal time bias, confounding bias, and competing risks. METHODS: For exemplary target trial emulation, we used a cohort of patients hospitalized with COVID-19 (n = 501) in a single centre. We described the methodology for evaluating the effectiveness of a single-dose treatment, emulated a trial using real-world data, and drafted a hypothetical study protocol describing the main components. To avoid immortal time and time-fixed confounding biases, we applied the clone-censor-weight technique. We set a 5-day grace period as a period of time when treatment could be initiated. We used the inverse probability of censoring weights to account for the selection bias introduced by artificial censoring. To estimate the treatment effects, we took the multi-state model approach. We considered a multi-state model with five states. The primary endpoint was defined as clinical severity status, assessed by a 5-point ordinal scale on day 30. Differences between the treatment group and standard of care treatment group were calculated using a proportional odds model and shown as odds ratios. Additionally, the weighted cause-specific hazards and transition probabilities for each treatment arm were presented. RESULTS: Our study demonstrates that trial emulation with a multi-state model analysis is a suitable approach to address observational data limitations, evaluate treatment effects on clinically heterogeneous in-hospital death and discharge alive endpoints, and consider the intermediate state of admission to ICU. The multi-state model analysis allows us to summarize results using stacked probability plots that make it easier to interpret results. CONCLUSIONS: Extending the emulated target trial approach to multi-state model analysis complements treatment effectiveness analysis by gaining information on competing events. Combining two methodologies offers an option to address immortal time bias, confounding bias, and competing risk events. This methodological approach can provide additional insight for decision-making, particularly when data from randomized controlled trials (RCTs) are unavailable.
Asunto(s)
COVID-19 , Humanos , Resultado del Tratamiento , Sesgo de Selección , Hospitalización , Oportunidad RelativaRESUMEN
OBJECTIVES: To assess the associations and prognostic value of scleroderma patterns by nailfold videocapillaroscopy (NVC) in patients with systemic sclerosis (SSc) and cutaneous subsets. METHODS: At baseline, 1356 SSc patients from the RESCLE registry were compared according to the scleroderma pattern as Late pattern and non-Late pattern, which included Early and Active patterns. Patient characteristics, disease features, survival time and causes of death were analysed. RESULTS: Late pattern was identified in 540 (39.8%), and non-Late pattern in 816 (60.2%) patients (88% women; 987 lcSSc/251 dcSSc). Late pattern was associated to dcSSc (OR=1.96; p<0.001), interstitial lung disease (ILD) (OR=1.29; p=0.031), and scleroderma renal crisis (OR=3.46; p<0.001). Once the cutaneous subset was disregarded in an alternative analysis, both digital ulcers (DU) (OR=1.29; p<0.037) and anti-topoisomerase I antibodies (OR=1.39; p< 0.036) emerged associated with the Late pattern. By cutaneous subsets, associations with Late pattern were: (1) in dcSSc, acro-osteolysis (OR=2.13; p=0.022), and systolic pulmonary artery pressure >40 mmHg by Doppler echocardiogram (OR=2.24; p<0.001); and (2) in lcSSc, ILD (OR=1.38; p=0.028). Survival was reduced in dcSSc with Late pattern compared to non-Late pattern (p=0.049). Risk factors for SSc mortality in multivariate regression Cox analysis were age at diagnosis (HR=1.03; p<0.001), dcSSc (HR=2.48; p<0.001), DU (HR=1.38; p=0.046), ILD (HR=2.81; p<0.001), and pulmonary arterial hypertension (HR=1.99; p<0.001). CONCLUSIONS: SSc patients with Late pattern more frequently present dcSSc and develop more fibrotic and vascular manifestations. Advanced microangiopathy by NVC identifies dcSSc patients at risk of reduced survival due to SSc-related causes.
Asunto(s)
Enfermedades Pulmonares Intersticiales , Esclerodermia Sistémica , Humanos , Femenino , Masculino , Pronóstico , Angioscopía Microscópica , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/diagnóstico , Enfermedades Pulmonares Intersticiales/diagnósticoRESUMEN
X chromosome inactivation (XCI) silences transcription from one of the two X chromosomes in female mammalian cells to balance expression dosage between XX females and XY males. XCI is, however, incomplete in humans: up to one-third of X-chromosomal genes are expressed from both the active and inactive X chromosomes (Xa and Xi, respectively) in female cells, with the degree of 'escape' from inactivation varying between genes and individuals. The extent to which XCI is shared between cells and tissues remains poorly characterized, as does the degree to which incomplete XCI manifests as detectable sex differences in gene expression and phenotypic traits. Here we describe a systematic survey of XCI, integrating over 5,500 transcriptomes from 449 individuals spanning 29 tissues from GTEx (v6p release) and 940 single-cell transcriptomes, combined with genomic sequence data. We show that XCI at 683 X-chromosomal genes is generally uniform across human tissues, but identify examples of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at least 23% of X-chromosomal genes, identify seven genes that escape XCI with support from multiple lines of evidence and demonstrate that escape from XCI results in sex biases in gene expression, establishing incomplete XCI as a mechanism that is likely to introduce phenotypic diversity. Overall, this updated catalogue of XCI across human tissues helps to increase our understanding of the extent and impact of the incompleteness in the maintenance of XCI.
Asunto(s)
Especificidad de Órganos/genética , Análisis de la Célula Individual , Inactivación del Cromosoma X/genética , Cromosomas Humanos X/genética , Femenino , Genes Ligados a X/genética , Genoma Humano/genética , Genómica , Humanos , Masculino , Fenotipo , Análisis de Secuencia de ARN , Transcriptoma/genéticaRESUMEN
Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
Asunto(s)
Estatura/genética , Frecuencia de los Genes/genética , Variación Genética/genética , Proteínas ADAMTS/genética , Adulto , Alelos , Moléculas de Adhesión Celular/genética , Femenino , Genoma Humano/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosaminoglicanos/biosíntesis , Proteínas Hedgehog/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Factores Reguladores del Interferón/genética , Subunidad alfa del Receptor de Interleucina-11/genética , Masculino , Herencia Multifactorial/genética , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Fenotipo , Proteína Plasmática A Asociada al Embarazo/metabolismo , Procolágeno N-Endopeptidasa/genética , Proteoglicanos/biosíntesis , Proteolisis , Receptores Androgénicos/genética , Somatomedinas/metabolismoRESUMEN
The UK Biobank is a very large, prospective population-based cohort study across the United Kingdom. It provides unprecedented opportunities for researchers to investigate the relationship between genotypic information and phenotypes of interest. Multiple regression methods, compared with genome-wide association studies (GWAS), have already been showed to greatly improve the prediction performance for a variety of phenotypes. In the high-dimensional settings, the lasso, since its first proposal in statistics, has been proved to be an effective method for simultaneous variable selection and estimation. However, the large-scale and ultrahigh dimension seen in the UK Biobank pose new challenges for applying the lasso method, as many existing algorithms and their implementations are not scalable to large applications. In this paper, we propose a computational framework called batch screening iterative lasso (BASIL) that can take advantage of any existing lasso solver and easily build a scalable solution for very large data, including those that are larger than the memory size. We introduce snpnet, an R package that implements the proposed algorithm on top of glmnet and optimizes for single nucleotide polymorphism (SNP) datasets. It currently supports â1-penalized linear model, logistic regression, Cox model, and also extends to the elastic net with â1/â2 penalty. We demonstrate results on the UK Biobank dataset, where we achieve competitive predictive performance for all four phenotypes considered (height, body mass index, asthma, high cholesterol) using only a small fraction of the variants compared with other established polygenic risk score methods.
Asunto(s)
Asma/epidemiología , Bancos de Muestras Biológicas , Genética de Población , Estudio de Asociación del Genoma Completo , Algoritmos , Asma/sangre , Asma/genética , Estatura/genética , Índice de Masa Corporal , Colesterol/sangre , Estudios de Cohortes , Genotipo , Humanos , Modelos Logísticos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Modelos de Riesgos Proporcionales , Reino Unido/epidemiologíaRESUMEN
The clinical evaluation of a genetic syndrome relies upon recognition of a characteristic pattern of signs or symptoms to guide targeted genetic testing for confirmation of the diagnosis. However, individuals displaying a single phenotype of a complex syndrome may not meet criteria for clinical diagnosis or genetic testing. Here, we present a phenome-wide association study (PheWAS) approach to systematically explore the phenotypic expressivity of common and rare alleles in genes associated with four well-described syndromic diseases (Alagille (AS), Marfan (MS), DiGeorge (DS), and Noonan (NS) syndromes) in the general population. Using human phenotype ontology (HPO) terms, we systematically mapped 60 phenotypes related to AS, MS, DS and NS in 337,198 unrelated white British from the UK Biobank (UKBB) based on their hospital admission records, self-administrated questionnaires, and physiological measurements. We performed logistic regression adjusting for age, sex, and the first 5 genetic principal components, for each phenotype and each variant in the target genes (JAG1, NOTCH2 FBN1, PTPN1 and RAS-opathy genes, and genes in the 22q11.2 locus) and performed a gene burden test. Overall, we observed multiple phenotype-genotype correlations, such as the association between variation in JAG1, FBN1, PTPN11 and SOS2 with diastolic and systolic blood pressure; and pleiotropy among multiple variants in syndromic genes. For example, rs11066309 in PTPN11 was significantly associated with a lower body mass index, an increased risk of hypothyroidism and a smaller size for gestational age, all in concordance with NS-related phenotypes. Similarly, rs589668 in FBN1 was associated with an increase in body height and blood pressure, and a reduced body fat percentage as observed in Marfan syndrome. Our findings suggest that the spectrum of associations of common and rare variants in genes involved in syndromic diseases can be extended to individual phenotypes within the general population.
Asunto(s)
Variación Biológica Poblacional/genética , Estudios de Asociación Genética/métodos , Estudio de Asociación del Genoma Completo/métodos , Síndrome de Alagille/genética , Alelos , Síndrome de DiGeorge/genética , Femenino , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Variación Genética/genética , Humanos , Masculino , Síndrome de Marfan/genética , Síndrome de Noonan/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Reino Unido , Población Blanca/genéticaRESUMEN
Protein-altering variants that are protective against human disease provide in vivo validation of therapeutic targets. Here we use genotyping data from UK Biobank (n = 337,151 unrelated White British individuals) and FinnGen (n = 176,899) to conduct a search for protein-altering variants conferring lower intraocular pressure (IOP) and protection against glaucoma. Through rare protein-altering variant association analysis, we find a missense variant in ANGPTL7 in UK Biobank (rs28991009, p.Gln175His, MAF = 0.8%, genotyped in 82,253 individuals with measured IOP and an independent set of 4,238 glaucoma patients and 250,660 controls) that significantly lowers IOP (ß = -0.53 and -0.67 mmHg for heterozygotes, -3.40 and -2.37 mmHg for homozygotes, P = 5.96 x 10-9 and 1.07 x 10-13 for corneal compensated and Goldman-correlated IOP, respectively) and is associated with 34% reduced risk of glaucoma (P = 0.0062). In FinnGen, we identify an ANGPTL7 missense variant at a greater than 50-fold increased frequency in Finland compared with other populations (rs147660927, p.Arg220Cys, MAF Finland = 4.3%), which was genotyped in 6,537 glaucoma patients and 170,362 controls and is associated with a 29% lower glaucoma risk (P = 1.9 x 10-12 for all glaucoma types and also protection against its subtypes including exfoliation, primary open-angle, and primary angle-closure). We further find three rarer variants in UK Biobank, including a protein-truncating variant, which confer a strong composite lowering of IOP (P = 0.0012 and 0.24 for Goldman-correlated and corneal compensated IOP, respectively), suggesting the protective mechanism likely resides in the loss of interaction or function. Our results support inhibition or down-regulation of ANGPTL7 as a therapeutic strategy for glaucoma.
Asunto(s)
Proteínas Similares a la Angiopoyetina/genética , Glaucoma/genética , Glaucoma/prevención & control , Presión Intraocular/genética , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Anciano de 80 o más Años , Proteína 7 Similar a la Angiopoyetina , Bancos de Muestras Biológicas/estadística & datos numéricos , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Finlandia/epidemiología , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genética de Población , Estudio de Asociación del Genoma Completo , Glaucoma/epidemiología , Humanos , Mutación con Pérdida de Función/genética , Masculino , Persona de Mediana Edad , Mutación Missense , Reino Unido/epidemiologíaRESUMEN
Acquired hemophilia A (AHA) is a rare bleeding disorder caused by the presence of autoantibodies against factor VIII (FVIII). As with other autoimmune diseases, its etiology is complex and its genetic basis is unknown. The aim of this study was to identify the immunogenetic background that predisposes individuals to AHA. HLA and KIR gene clusters, as well as KLRK1, were sequenced using next-generation sequencing in 49 AHA patients. Associations between candidate genes involved in innate and adaptive immune responses and AHA were addressed by comparing the alleles, genotypes, haplotypes, and gene frequencies in the AHA cohort with those in the donors' samples or Spanish population cohort. Two genes of the HLA cluster, as well as rs1049174 in KLRK1, which tags the natural killer (NK) cytotoxic activity haplotype, were found to be linked to AHA. Specifically, A*03:01 (p = 0.024; odds ratio (OR) = 0.26[0.06-0.85]) and DRB1*13:03 (p = 6.8 × 103, OR = 7.56[1.64-51.40]), as well as rs1049174 (p = 0.012), were significantly associated with AHA. In addition, two AHA patients were found to carry one copy each of the low-frequency allele DQB1*03:09 (nallele = 2, 2.04%), which was completely absent in the donors. To the best of our knowledge, this is the first time that the involvement of these specific alleles in the predisposition to AHA has been proposed. Further molecular and functional studies will be needed to unravel their specific contributions. We believe our findings expand the current knowledge on the genetic factors involved in susceptibility to AHA, which will contribute to improving the diagnosis and prognosis of AHA patients.
Asunto(s)
Hemofilia A , Humanos , Hemofilia A/genética , Genotipo , Haplotipos/genética , Alelos , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Sistema Inmunológico , Predisposición Genética a la EnfermedadRESUMEN
Copy-number variations (CNVs) represent a significant proportion of the genetic differences between individuals and many CNVs associate causally with syndromic disease and clinical outcomes. Here, we characterize the landscape of copy-number variation and their phenome-wide effects in a sample of 472,228 array-genotyped individuals from the UK Biobank. In addition to population-level selection effects against genic loci conferring high mortality, we describe genetic burden from potentially pathogenic and previously uncharacterized CNV loci across more than 3,000 quantitative and dichotomous traits, with separate analyses for common and rare classes of variation. Specifically, we highlight the effects of CNVs at two well-known syndromic loci 16p11.2 and 22q11.2, previously uncharacterized variation at 9p23, and several genic associations in the context of acute coronary artery disease and high body mass index. Our data constitute a deeply contextualized portrait of population-wide burden of copy-number variation, as well as a series of dosage-mediated genic associations across the medical phenome.