Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 572(7768): 244-248, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31367037

RESUMEN

Vibrio cholerae is the causative agent of cholera, a potentially lethal enteric bacterial infection1. Cholera toxin (CTX), a protein complex that is secreted by V. cholerae, is required for V. cholerae to cause severe disease. CTX is also thought to promote transmission of the organism, as infected individuals shed many litres of diarrhoeal fluid that typically contains in excess of 1011 organisms per litre. How the pathogen is able to reach such high concentrations in the intestine during infection remains poorly understood. Here we show that CTX increases pathogen growth and induces a distinct V. cholerae transcriptomic signature that is indicative of an iron-depleted gut niche. During infection, bacterial pathogens need to acquire iron, which is an essential nutrient for growth2. Most iron in the mammalian host is found in a chelated form within the porphyrin structure of haem, and the ability to use haem as a source of iron is genetically encoded by V. cholerae3. We show that the genes that enable V. cholerae to obtain iron via haem and vibriobactin confer a growth advantage to the pathogen only when CTX is produced. Furthermore, we found that CTX-induced congestion of capillaries in the terminal ileum correlated with an increased bioavailability of luminal haem. CTX-induced disease in the ileum also led to increased concentrations of long-chain fatty acids and L-lactate metabolites in the lumen, as well as the upregulation of V. cholerae genes that encode enzymes of the tricarboxylic acid (TCA) cycle that contain iron-sulfur clusters. Genetic analysis of V. cholerae suggested that pathogen growth was dependent on the uptake of haem and long-chain fatty acids during infection, but only in a strain capable of producing CTX in vivo. We conclude that CTX-induced disease creates an iron-depleted metabolic niche in the gut, which selectively promotes the growth of V. cholerae through the acquisition of host-derived haem and fatty acids.


Asunto(s)
Toxina del Cólera/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Vibrio cholerae/efectos de los fármacos , Vibrio cholerae/metabolismo , Animales , Cólera/metabolismo , Cólera/microbiología , Ciclo del Ácido Cítrico/efectos de los fármacos , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Hemo/metabolismo , Ácido Láctico/metabolismo , Ratones , Conejos , Análisis de Secuencia de ARN , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Vibrio cholerae/genética
2.
Infect Immun ; 91(5): e0043522, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37022166

RESUMEN

In order for successful fecal-oral transmission, enteric bacterial pathogens have to successfully compete with the intestinal microbiota and reach high concentrations during infection. Vibrio cholerae requires cholera toxin (CT) to cause diarrheal disease, which is thought to promote the fecal-oral transmission of the pathogen. Besides inducing diarrheal disease, the catalytic activity of CT also alters host intestinal metabolism, which promotes the growth of V. cholerae during infection through the acquisition of host-derived nutrients. Furthermore, recent studies have found that CT-induced disease activates a niche-specific suite of V. cholerae genes during infection, some of which may be important for fecal-oral transmission of the pathogen. Our group is currently exploring the concept that CT-induced disease promotes the fecal-oral transmission of V. cholerae by modulating both host and pathogen metabolism. Furthermore, the role of the intestinal microbiota in pathogen growth and transmission during toxin-induced disease merits further investigation. These studies open the door to investigating whether other bacterial toxins also enhance pathogen growth and transmission during infection, which may shed light on the design of novel therapeutics for intervention or prevention of diarrheal diseases.


Asunto(s)
Toxinas Bacterianas , Cólera , Vibrio cholerae , Humanos , Toxina del Cólera/genética , Cólera/microbiología , Vibrio cholerae/fisiología , Diarrea
3.
Annu Rev Microbiol ; 69: 31-48, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26002180

RESUMEN

A metabolically diverse microbial community occupies all available nutrient-niches in the lumen of the mammalian intestine, making it difficult for pathogens to establish themselves in this highly competitive environment. Salmonella serovars sidestep the competition by using their virulence factors to coerce the host into creating a novel nutrient-niche. Inflammation-derived nutrients available in this new niche support a bloom of Salmonella serovars, thereby ensuring transmission of the pathogen to the next susceptible host by the fecal-oral route. Here we review the anaerobic food chain that characterizes resident gut-associated microbial communities along with the winning metabolic strategy Salmonella serovars use to edge out competing microbes in the inflamed intestine.


Asunto(s)
Intestinos/microbiología , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/metabolismo , Anaerobiosis , Animales , Humanos , Interacciones Microbianas , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/patología , Salmonella typhimurium/patogenicidad , Factores de Virulencia/metabolismo
4.
J Biol Chem ; 292(21): 8577-8581, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28389556

RESUMEN

Carbapenemase-producing Enterobacteriaceae are an emerging threat to hospitals worldwide, and antibiotic exposure is a risk factor for developing fecal carriage that may lead to nosocomial infection. Here, we review how antibiotics reduce colonization resistance against Enterobacteriaceae to pinpoint possible control points for curbing their spread. Recent work identifies host-derived respiratory electron acceptors as a critical resource driving a post-antibiotic expansion of Enterobacteriaceae within the large bowel. By providing a conceptual framework for colonization resistance against Enterobacteriaceae, these mechanistic insights point to the metabolism of epithelial cells as a possible target for intervention strategies.


Asunto(s)
Antibacterianos/uso terapéutico , Bacterias , Infecciones Bacterianas , Farmacorresistencia Bacteriana , Microbioma Gastrointestinal , Intestinos/microbiología , Animales , Bacterias/genética , Bacterias/metabolismo , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/genética , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/patología , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Humanos , Intestinos/patología
5.
Infect Immun ; 83(9): 3470-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26099579

RESUMEN

The food-borne pathogen Salmonella enterica serovar Typhimurium benefits from acute inflammation in part by using host-derived nitrate to respire anaerobically and compete successfully with the commensal microbes during growth in the intestinal lumen. The S. Typhimurium genome contains three nitrate reductases, encoded by the narGHI, narZYV, and napABC genes. Work on homologous genes present in Escherichia coli suggests that nitrate reductase A, encoded by the narGHI genes, is the main enzyme promoting growth on nitrate as an electron acceptor in anaerobic environments. Using a mouse colitis model, we found, surprisingly, that S. Typhimurium strains with defects in either nitrate reductase A (narG mutant) or the regulator inducing its transcription in the presence of high concentrations of nitrate (narL mutant) exhibited growth comparable to that of wild-type S. Typhimurium. In contrast, a strain lacking a functional periplasmic nitrate reductase (napA mutant) exhibited a marked growth defect in the lumen of the colon. In E. coli, the napABC genes are transcribed maximally under anaerobic growth conditions in the presence of low nitrate concentrations. Inactivation of narP, encoding a response regulator that activates napABC transcription in response to low nitrate concentrations, significantly reduced the growth of S. Typhimurium in the gut lumen. Cecal nitrate measurements suggested that the murine cecum is a nitrate-limited environment. Collectively, our results suggest that S. Typhimurium uses the periplasmic nitrate reductase to support its growth on the low nitrate concentrations encountered in the gut, a strategy that may be shared with other enteric pathogens.


Asunto(s)
Colitis/microbiología , Intoxicación Alimentaria por Salmonella/enzimología , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/patogenicidad , Animales , Colitis/enzimología , Modelos Animales de Enfermedad , Ratones , Nitrato Reductasas/metabolismo , Periplasma/enzimología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Salmonella typhimurium/enzimología
6.
PLoS Pathog ; 9(4): e1003267, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23637594

RESUMEN

Chemotaxis enhances the fitness of Salmonella enterica serotype Typhimurium (S. Typhimurium) during colitis. However, the chemotaxis receptors conferring this fitness advantage and their cognate signals generated during inflammation remain unknown. Here we identify respiratory electron acceptors that are generated in the intestinal lumen as by-products of the host inflammatory response as in vivo signals for methyl-accepting chemotaxis proteins (MCPs). Three MCPs, including Trg, Tsr and Aer, enhanced the fitness of S. Typhimurium in a mouse colitis model. Aer mediated chemotaxis towards electron acceptors (energy taxis) in vitro and required tetrathionate respiration to confer a fitness advantage in vivo. Tsr mediated energy taxis towards nitrate but not towards tetrathionate in vitro and required nitrate respiration to confer a fitness advantage in vivo. These data suggest that the energy taxis receptors Tsr and Aer respond to distinct in vivo signals to confer a fitness advantage upon S. Typhimurium during inflammation by enabling this facultative anaerobic pathogen to seek out favorable spatial niches containing host-derived electron acceptors that boost its luminal growth.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quimiotaxis , Colitis/microbiología , Metabolismo Energético , Proteínas de la Membrana/metabolismo , Salmonelosis Animal/microbiología , Salmonella typhimurium/patogenicidad , Animales , Proteínas Portadoras/metabolismo , Colitis/inmunología , Transporte de Electrón , Femenino , Inflamación , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Proteínas Quimiotácticas Aceptoras de Metilo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Neutrófilos/inmunología , Nitratos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Superficie Celular/metabolismo , Salmonelosis Animal/inmunología , Salmonella typhimurium/inmunología , Salmonella typhimurium/fisiología , Ácido Tetratiónico/metabolismo
7.
Curr Opin Microbiol ; 77: 102421, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38215547

RESUMEN

Vibrio cholerae (V. cholerae), the etiological agent of cholera, uses cholera toxin (CT) to cause severe diarrheal disease. Cholera is still a significant cause of mortality worldwide with about half of all cholera cases and deaths occurring in children under five. Owing to the lack of cost-effective vaccination and poor vaccine efficacy in children, there is a need for alternative preventative and therapeutic strategies. Recent advances in our knowledge of the interplay between CT-induced disease and host-pathogen metabolism have opened the door for investigating how modulation of intestinal metabolism by V. cholerae during disease impacts host intestinal immunity, the gut microbiota, and pathogen-phage interactions. In this review article, we examine recent progress in our understanding of host-pathogen interactions during V. cholerae infection and discuss future work deciphering how modulation of gut metabolism during cholera intersects these processes to enable successful fecal-oral transmission of the pathogen.


Asunto(s)
Bacteriófagos , Cólera , Vibrio cholerae , Niño , Humanos , Vibrio cholerae/metabolismo , Toxina del Cólera/metabolismo , Interacciones Huésped-Patógeno , Bacteriófagos/metabolismo
8.
Toxins (Basel) ; 14(3)2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35324722

RESUMEN

Vibrio cholerae uses cholera toxin (CT) to cause cholera, a severe diarrheal disease in humans that can lead to death within hours of the onset of symptoms. The catalytic activity of CT in target epithelial cells increases cellular levels of 3',5'-cyclic AMP (cAMP), leading to the activation of the cystic fibrosis transmembrane conductance regulator (CFTR), an apical ion channel that transports chloride out of epithelial cells, resulting in an electrolyte imbalance in the intestinal lumen and massive water loss. Here we report that when administered perorally, benzopyrimido-pyrrolo-oxazinedione, (R)-BPO-27), a potent small molecule inhibitor of CFTR, blocked disease symptoms in a mouse model for acute diarrhea caused by toxigenic V. cholerae. We show that both (R)-BPO-27 and its racemic mixture, (R/S)-BPO-27, are able to protect mice from CT-dependent diarrheal disease and death. Furthermore, we show that, consistent with the ability of the compound to block the secretory diarrhea induced by CT, BPO-27 has a measurable effect on suppressing the gut replication and survival of V. cholerae, including a 2010 isolate from Haiti that is representative of the most predominant 'variant strains' that are causing epidemic and pandemic cholera worldwide. Our results suggest that BPO-27 should advance to human Phase I studies that could further address its safety and efficacy as therapeutic or preventative drug intervention for diarrheal syndromes, including cholera, that are mediated by CFTR channel activation.


Asunto(s)
Cólera , Vibrio cholerae , Animales , Cólera/tratamiento farmacológico , Toxina del Cólera/uso terapéutico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/uso terapéutico , Diarrea/tratamiento farmacológico , Ratones , Morbilidad , Vibrio cholerae/metabolismo
9.
Bio Protoc ; 7(10)2017 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-29094059

RESUMEN

In recent years, many spore-forming commensal Clostridia found in the gut have been discovered to promote host physiology, immune development, and protection against infections. We provide a detailed protocol for rapid enrichment of spore-forming bacteria from murine intestine. Briefly, contents from the intestinal cecum are collected aerobically, diluted and finally treated with chloroform to enrich for Clostridia spores.

10.
Free Radic Biol Med ; 105: 93-101, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27677568

RESUMEN

Changes in the composition of gut-associated microbial communities may underlie many inflammatory and allergic diseases. However, the processes that help maintain a stable community structure are poorly understood. Here we review topical work elucidating the nutrient-niche occupied by facultative anaerobic bacteria of the family Enterobacteriaceae, whose predominance within the gut-associated microbial community is a common marker of dysbiosis. A paucity of exogenous respiratory electron acceptors limits growth of Enterobacteriaceae within a balanced gut-associated microbial community. However, recent studies suggest that the availability of oxygen in the large bowel is markedly elevated by changes in host physiology that accompany antibiotic treatment or infection with enteric pathogens, such as Salmonella serovars or attaching and effacing (AE) pathogens. The resulting increase in oxygen availability, alone or in conjunction with other electron acceptors, drives an uncontrolled luminal expansion of Enterobacteriaceae. Insights into the underlying mechanisms provide important clues about factors that control the balance between the host and its resident microbial communities.


Asunto(s)
Disbiosis/metabolismo , Enterobacteriaceae/fisiología , Microbioma Gastrointestinal , Oxígeno/fisiología , Animales , Disbiosis/microbiología , Gastroenteritis/microbiología , Interacciones Huésped-Patógeno , Humanos , Mucosa Intestinal/microbiología , Interacciones Microbianas , Oxidación-Reducción
11.
Curr Opin Microbiol ; 35: 1-7, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27621139

RESUMEN

Work on type III or type IV secretion systems (T3SSs or T4SSs) is often focused on elucidating how these sophisticated bacterial virulence factors manipulate host cell physiology to cause disease. But to fully understand their role in pathogen biology, it is important to consider whether the morbidity or mortality they trigger is somehow linked to enhancing communicability of the microbe. Recent work on Salmonella enterica and Brucella abortus provide captivating examples of how manipulation of host cells with T3SSs or T4SSs instigates distant downstream consequences that promote spread of the pathogen. It is clear from these examples that T3SSs and T4SSs are ultimately transmission factors placed under selection by an incredibly complex series of events unfolding during host pathogen interaction.


Asunto(s)
Bacterias Gramnegativas/patogenicidad , Infecciones por Bacterias Gramnegativas/transmisión , Sistemas de Secreción Tipo III , Sistemas de Secreción Tipo IV , Animales , Brucella/patogenicidad , Brucelosis/transmisión , Infecciones por Bacterias Gramnegativas/microbiología , Interacciones Huésped-Patógeno , Humanos , Transporte de Proteínas , Salmonella/patogenicidad , Infecciones por Salmonella/transmisión , Factores de Virulencia
12.
Science ; 357(6351): 570-575, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28798125

RESUMEN

Perturbation of the gut-associated microbial community may underlie many human illnesses, but the mechanisms that maintain homeostasis are poorly understood. We found that the depletion of butyrate-producing microbes by antibiotic treatment reduced epithelial signaling through the intracellular butyrate sensor peroxisome proliferator-activated receptor γ (PPAR-γ). Nitrate levels increased in the colonic lumen because epithelial expression of Nos2, the gene encoding inducible nitric oxide synthase, was elevated in the absence of PPAR-γ signaling. Microbiota-induced PPAR-γ signaling also limits the luminal bioavailability of oxygen by driving the energy metabolism of colonic epithelial cells (colonocytes) toward ß-oxidation. Therefore, microbiota-activated PPAR-γ signaling is a homeostatic pathway that prevents a dysbiotic expansion of potentially pathogenic Escherichia and Salmonella by reducing the bioavailability of respiratory electron acceptors to Enterobacteriaceae in the lumen of the colon.


Asunto(s)
Disbiosis/metabolismo , Disbiosis/microbiología , Enterobacteriaceae/patogenicidad , Microbioma Gastrointestinal , Óxido Nítrico Sintasa de Tipo II/metabolismo , PPAR gamma/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Anilidas/farmacología , Animales , Antibacterianos/farmacología , Butiratos/metabolismo , Células CACO-2 , Clostridium/efectos de los fármacos , Clostridium/metabolismo , Colitis/metabolismo , Colitis/microbiología , Colon/metabolismo , Colon/microbiología , Disbiosis/inducido químicamente , Disbiosis/genética , Enterobacteriaceae/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Femenino , Expresión Génica , Homeostasis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Nitratos/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Oxidación-Reducción , PPAR gamma/antagonistas & inhibidores , PPAR gamma/genética , Transducción de Señal , Estreptomicina/farmacología
13.
mBio ; 7(4)2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27435462

RESUMEN

UNLABELLED: Salmonella enterica serovar Typhimurium can cross the epithelial barrier using either the invasion-associated type III secretion system (T3SS-1) or a T3SS-1-independent mechanism that remains poorly characterized. Here we show that flagellum-mediated motility supported a T3SS-1-independent pathway for entering ileal Peyer's patches in the mouse model. Flagellum-dependent invasion of Peyer's patches required energy taxis toward nitrate, which was mediated by the methyl-accepting chemotaxis protein (MCP) Tsr. Generation of nitrate in the intestinal lumen required inducible nitric oxide synthase (iNOS), which was synthesized constitutively in the mucosa of the terminal ileum but not in the jejunum, duodenum, or cecum. Tsr-mediated invasion of ileal Peyer's patches was abrogated in mice deficient for Nos2, the gene encoding iNOS. We conclude that Tsr-mediated energy taxis enables S Typhimurium to migrate toward the intestinal epithelium by sensing host-derived nitrate, thereby contributing to invasion of Peyer's patches. IMPORTANCE: Nontyphoidal Salmonella serovars, such as S. enterica serovar Typhimurium, are a common cause of gastroenteritis in immunocompetent individuals but can also cause bacteremia in immunocompromised individuals. While the invasion-associated type III secretion system (T3SS-1) is important for entry, S Typhimurium strains lacking a functional T3SS-1 can still cross the intestinal epithelium and cause a disseminated lethal infection in mice. Here we observed that flagellum-mediated motility and chemotaxis contributed to a T3SS-1-independent pathway for invasion and systemic dissemination to the spleen. This pathway required the methyl-accepting chemotaxis protein (MCP) Tsr and energy taxis toward host-derived nitrate, which we found to be generated by inducible nitric oxide synthase (iNOS) in the ileal mucosa prior to infection. Collectively, our data suggest that S Typhimurium enhances invasion by actively migrating toward the intestinal epithelium along a gradient of host-derived nitrate emanating from the mucosal surface of the ileum.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quimiotaxis , Endocitosis , Células Epiteliales/microbiología , Proteínas de la Membrana/metabolismo , Nitratos/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/patogenicidad , Animales , Ciego/enzimología , Modelos Animales de Enfermedad , Metabolismo Energético , Flagelos/fisiología , Islas Genómicas , Intestino Delgado/enzimología , Locomoción , Ratones , Óxido Nítrico Sintasa de Tipo II/análisis , Salmonella typhimurium/metabolismo , Salmonella typhimurium/fisiología
14.
Cell Host Microbe ; 19(4): 443-54, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27078066

RESUMEN

The mammalian intestine is host to a microbial community that prevents pathogen expansion through unknown mechanisms, while antibiotic treatment can increase susceptibility to enteric pathogens. Here we show that streptomycin treatment depleted commensal, butyrate-producing Clostridia from the mouse intestinal lumen, leading to decreased butyrate levels, increased epithelial oxygenation, and aerobic expansion of Salmonella enterica serovar Typhimurium. Epithelial hypoxia and Salmonella restriction could be restored by tributyrin treatment. Clostridia depletion and aerobic Salmonella expansion were also observed in the absence of streptomycin treatment in genetically resistant mice but proceeded with slower kinetics and required the presence of functional Salmonella type III secretion systems. The Salmonella cytochrome bd-II oxidase synergized with nitrate reductases to drive luminal expansion, and both were required for fecal-oral transmission. We conclude that Salmonella virulence factors and antibiotic treatment promote pathogen expansion through the same mechanism: depletion of butyrate-producing Clostridia to elevate epithelial oxygenation, allowing aerobic Salmonella growth.


Asunto(s)
Ácido Butírico/metabolismo , Clostridium/metabolismo , Microbioma Gastrointestinal , Intestinos/microbiología , Salmonella typhimurium/crecimiento & desarrollo , Aerobiosis , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clostridium/efectos de los fármacos , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Oxígeno/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Estreptomicina/farmacología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
15.
Science ; 353(6305): 1249-53, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27634526

RESUMEN

Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here, we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration.


Asunto(s)
Citrobacter rodentium/patogenicidad , Colitis/microbiología , Colitis/patología , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/patología , Factores de Virulencia/fisiología , Aerobiosis , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Citrobacter rodentium/genética , Colitis/tratamiento farmacológico , Colon/microbiología , Colon/patología , Citocromos/genética , Citocromos/fisiología , Dibenzazepinas/uso terapéutico , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/fisiología , Eliminación de Gen , Hiperplasia/microbiología , Hiperplasia/patología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Antígeno Ki-67/análisis , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Nitratos/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/fisiología , Receptores Notch/metabolismo , Factores de Virulencia/genética
16.
mBio ; 3(3)2012.
Artículo en Inglés | MEDLINE | ID: mdl-22691391

RESUMEN

Information on how emerging pathogens can invade and persist and spread within host populations remains sparse. In the 1980s, a multidrug-resistant Salmonella enterica serotype Typhimurium clone lysogenized by a bacteriophage carrying the sopE virulence gene caused an epidemic among cattle and humans in Europe. Here we show that phage-mediated horizontal transfer of the sopE gene enhances the production of host-derived nitrate, an energetically highly valuable electron acceptor, in a mouse colitis model. In turn, nitrate fuels a bloom of S. Typhimurium in the gut lumen through anaerobic nitrate respiration while suppressing genes for the utilization of energetically inferior electron acceptors such as tetrathionate. Through this mechanism, horizontal transfer of sopE can enhance the fitness of S. Typhimurium, resulting in its significantly increased abundance in the feces. IMPORTANCE During gastroenteritis, Salmonella enterica serotype Typhimurium can use tetrathionate respiration to edge out competing microbes in the gut lumen. However, the concept that tetrathionate respiration confers a growth benefit in the inflamed gut is not broadly applicable to other host-pathogen combinations because tetrathionate respiration is a signature trait used to differentiate Salmonella serotypes from most other members of the family Enterobacteriaceae. Here we show that by acquiring the phage-carried sopE gene, S. Typhimurium can drive the host to generate an additional respiratory electron acceptor, nitrate. Nitrate suppresses genes for the utilization of energetically inferior electron acceptors such as tetrathionate while enhancing the luminal growth of S. Typhimurium through anaerobic nitrate respiration. Pathways for anaerobic nitrate respiration are widely conserved among members of the family Enterobacteriaceae, thereby making our observations relevant to other enteric pathogens whose relative abundance in the intestinal lumen increases during infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Transferencia de Gen Horizontal , Nitratos/metabolismo , Fagos de Salmonella/genética , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/virología , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Bovinos , Colitis/microbiología , Colitis/patología , Modelos Animales de Enfermedad , Heces/microbiología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Oxidación-Reducción , Salmonelosis Animal/microbiología , Salmonelosis Animal/patología , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/metabolismo , Transducción Genética , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA