Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Transpl Int ; 37: 12791, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681973

RESUMEN

Intensive Care to facilitate Organ Donation (ICOD) consists of the initiation or continuation of intensive care measures in patients with a devastating brain injury (DBI) in whom curative treatment is deemed futile and death by neurological criteria (DNC) is foreseen, to incorporate organ donation into their end-of-life plans. In this study we evaluate the outcomes of patients subject to ICOD and identify radiological and clinical factors associated with progression to DNC. In this first prospective multicenter study we tested by multivariate regression the association of clinical and radiological severity features with progression to DNC. Of the 194 patients, 144 (74.2%) patients fulfilled DNC after a median of 25 h (95% IQR: 17-44) from ICOD onset. Two patients (1%) shifted from ICOD to curative treatment, both were alive at discharge. Factors associated with progression to DNC included: age below 70 years, clinical score consistent with severe brain injury, instability, intracranial hemorrhage, midline shift ≥5 mm and certain types of brain herniation. Overall 151 (77.8%) patients progressed to organ donation. Based on these results, we conclude that ICOD is a beneficial and efficient practice that can contribute to the pool of deceased donors.


Asunto(s)
Cuidados Críticos , Obtención de Tejidos y Órganos , Humanos , Estudios Prospectivos , Masculino , Femenino , Obtención de Tejidos y Órganos/métodos , Persona de Mediana Edad , Anciano , España , Adulto , Lesiones Encefálicas , Muerte Encefálica , Unidades de Cuidados Intensivos
2.
Proc Natl Acad Sci U S A ; 116(16): 8000-8009, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30926666

RESUMEN

Neural stem cells continuously generate newborn neurons that integrate into and modify neural circuitry in the adult hippocampus. The molecular mechanisms that regulate or perturb neural stem cell proliferation and differentiation, however, remain poorly understood. Here, we have found that mouse hippocampal radial glia-like (RGL) neural stem cells express the synaptic cochaperone cysteine string protein-α (CSP-α). Remarkably, in CSP-α knockout mice, RGL stem cells lose quiescence postnatally and enter into a high-proliferation regime that increases the production of neural intermediate progenitor cells, thereby exhausting the hippocampal neural stem cell pool. In cell culture, stem cells in hippocampal neurospheres display alterations in proliferation for which hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway is the primary cause of neurogenesis deregulation in the absence of CSP-α. In addition, RGL cells lose quiescence upon specific conditional targeting of CSP-α in adult neural stem cells. Our findings demonstrate an unanticipated cell-autonomic and circuit-independent disruption of postnatal neurogenesis in the absence of CSP-α and highlight a direct or indirect CSP-α/mTOR signaling interaction that may underlie molecular mechanisms of brain dysfunction and neurodegeneration.


Asunto(s)
Proteínas del Choque Térmico HSP40 , Proteínas de la Membrana , Células-Madre Neurales/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Células Cultivadas , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Hipocampo/citología , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Neurogénesis/genética , Lipofuscinosis Ceroideas Neuronales , Transducción de Señal/genética
3.
EMBO Mol Med ; 8(11): 1289-1309, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27807076

RESUMEN

Skeletal muscle regeneration by muscle satellite cells is a physiological mechanism activated upon muscle damage and regulated by Notch signaling. In a family with autosomal recessive limb-girdle muscular dystrophy, we identified a missense mutation in POGLUT1 (protein O-glucosyltransferase 1), an enzyme involved in Notch posttranslational modification and function. In vitro and in vivo experiments demonstrated that the mutation reduces O-glucosyltransferase activity on Notch and impairs muscle development. Muscles from patients revealed decreased Notch signaling, dramatic reduction in satellite cell pool and a muscle-specific α-dystroglycan hypoglycosylation not present in patients' fibroblasts. Primary myoblasts from patients showed slow proliferation, facilitated differentiation, and a decreased pool of quiescent PAX7+ cells. A robust rescue of the myogenesis was demonstrated by increasing Notch signaling. None of these alterations were found in muscles from secondary dystroglycanopathy patients. These data suggest that a key pathomechanism for this novel form of muscular dystrophy is Notch-dependent loss of satellite cells.


Asunto(s)
Glucosiltransferasas/genética , Distrofias Musculares/genética , Distrofias Musculares/patología , Mutación , Receptores Notch/metabolismo , Células Satélite del Músculo Esquelético/patología , Transducción de Señal , Biopsia , Glicosilación , Glicosiltransferasas/metabolismo , Humanos , Músculos/patología , Análisis de Secuencia de ADN , España
4.
Curr Microbiol ; 51(3): 164-70, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16059771

RESUMEN

DnaK chaperones participate in essential cellular processes including the assistance of the folding, structural maintenance, trafficking, and degradation of proteins, the control of stress responses, and so on. In contrast to the situation found in most other bacterial groups, the cyanobacteria contain multiple dnaK homolog genes whose cellular roles remain ambiguous. We compared in this work the in vivo chaperone capabilities of the DnaK1 members from the halophyte Aphanothece halophytica and the freshwater species Synechococcus elongatus. The corresponding dnaK1 genes were expressed in Escherichia coli, and the abilities of the encoded chaperones to provide for both general and specific functions conducted by E. coli DnaK were analyzed. Synechococcus DnaK1 was far more effective than A. halophytica DnaK1 in replacing E. coli DnaK in all activities tested in vivo, including changes in cell morphology and downregulation of the heat shock response, prevention of the aggregation of misfolded proteins, and restoration of thermotolerance to dnaK-deficient mutants. Thus, regardless of an extensive sequence similarity and comparable in vitro chaperone capabilities, the two cyanobacterial DnaK1 chaperones functionally differed under in vivo conditions. The overall results reinforce the notion that A. halophytica DnaK1 and Synechococcus DnaK1 evolved different substrate specificity since they separated from a common ancestor.


Asunto(s)
Cianobacterias/química , Escherichia coli/metabolismo , Chaperonas Moleculares/fisiología , Synechococcus/química , Proteínas Bacterianas/metabolismo , Cianobacterias/genética , Cianobacterias/fisiología , Regulación hacia Abajo , Escherichia coli/citología , Escherichia coli/fisiología , Agua Dulce , Respuesta al Choque Térmico/fisiología , Chaperonas Moleculares/genética , Filogenia , Especificidad de la Especie , Synechococcus/genética , Synechococcus/fisiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA