Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Oncologist ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39022993

RESUMEN

INTRODUCTION: Personalized and tumor-informed circulating tumor DNA (ctDNA) testing is feasible and allows for molecular residual disease (MRD) identification in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS: In this retrospective analysis of commercial cases from multiple US institutions, personalized, tumor-informed, whole-exome sequenced, and germline-controlled ctDNA levels were quantified and analyzed in patients with PDAC. Plasma samples (n = 1329) from 299 clinically validated patients were collected at diagnosis, perioperatively (MRD-window; within 2-12 weeks after surgery, before therapy), and during surveillance (>12 weeks post-surgery if no ACT or starting 4 weeks post-ACT) from November 2019 to March 2023. RESULTS: Of the initially diagnosed patients with stages I-III PDAC who went for resection, the median follow-up time from surgery was 13 months (range 0.1-214). Positive ctDNA detection rates were 29% (29/100) and 29.6% (45/152) during the MRD and surveillance windows, respectively. Positive ctDNA detection was significantly associated with shorter DFS within the MRD window (median DFS of 6.37 months for ctDNA-positive vs 33.31 months for ctDNA-negative patients; HR: 5.45, P < .0001) as well as during the surveillance period (median DFS: 11.40 months for ctDNA-positive vs NR for ctDNA-negative; HR: 12.38, P < .0001). Additionally, DFS was significantly better with KRAS wildtype status followed by KRASG12R (HR: 0.99, P = .97), KRASG12D (HR: 1.42, P = .194), and worse with KRASG12V (HR: 2.19, P = .002) status. In multivariate analysis, ctDNA detection at surveillance was found to be the most significant prognostic factor for recurrence (HR: 24.28, P < .001). CONCLUSIONS: Perioperative tumor-informed ctDNA detection in PDAC is feasible across all stages and is associated with patient survival outcomes.

2.
Gynecol Oncol ; 182: 63-69, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38262240

RESUMEN

INTRODUCTION: Among uterine malignancies, endometrial cancer (EC) is the most common cancer of the female reproductive tract. Traditionally, risk stratification in EC is determined by standard clinicopathological risk factors. Although circulating tumor DNA (ctDNA) has emerged as a prognostic biomarker in various malignancies, its clinical validity in EC remains to be established. METHODS: In this analysis of real-world data, 267 plasma samples from 101 patients with stage I EC were analyzed using a tumor-informed ctDNA assay (Signatera™ bespoke mPCR-NGS). Patients were followed post-surgically and monitored with ctDNA testing for a median of 6.8 months (range: 0.37-19.1). RESULTS: Patients who tested ctDNA-positive at both their first time point and longitudinally experienced inferior recurrence-free survival (RFS) (HR = 6.2; p = 0.0006 and HR = 15.5; p < 0.0001, respectively), and showed a recurrence rate of 58% and 52%, vs. 6% and 0%, respectively for the ctDNA-negative patients. Most ctDNA-positive patients had high-risk histologies or sarcoma, versus low-risk and high-intermediate risk (H-IR) EC. Furthermore, patients with high-risk histologies who were ctDNA-positive showed shorter RFS compared to those who tested negative (HR = 9.5; p = 0.007), and those who tested positive in the low/H-IR cohort (HR = 0.25; p = 0.04). Post-surgically, detectable ctDNA was highly prognostic of clinical outcome and remained the only significant risk factor for recurrence when adjusted for clinicopathological risk factors, such as histologic risk group, mismatch repair (MMR), and p53 status. CONCLUSION: Incorporating ctDNA monitoring along with traditional known risk factors may aid in identifying patients with stage I EC who are at highest risk of recurrence, and possibly aid in treatment stratification.


Asunto(s)
ADN Tumoral Circulante , Neoplasias Endometriales , Humanos , Femenino , Pronóstico , ADN Tumoral Circulante/genética , Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/genética , Neoplasias Endometriales/cirugía , Recurrencia Local de Neoplasia/patología , Biomarcadores de Tumor/genética
3.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36983050

RESUMEN

Cancer testis antigens are ideal for tumor immunotherapy due to their testis-restricted expression. We previously showed that an immunotherapeutic vaccine targeting the germ cell-specific transcription factor BORIS (CTCFL) was highly effective in treating aggressive breast cancer in the 4T1 mouse model. Here, we further tested the therapeutic efficacy of BORIS in a rat 13762 breast cancer model. We generated a recombinant VEE-VRP (Venezuelan Equine Encephalitis-derived replicon particle) vector-expressing modified rat BORIS lacking a DNA-binding domain (VRP-mBORIS). Rats were inoculated with the 13762 cells, immunized with VRP-mBORIS 48 h later, and then, subsequently, boosted at 10-day intervals. The Kaplan-Meier method was used for survival analysis. Cured rats were re-challenged with the same 13762 cells. We demonstrated that BORIS was expressed in a small population of the 13762 cells, called cancer stem cells. Treatment of rats with VRP-BORIS suppressed tumor growth leading to its complete disappearance in up to 50% of the rats and significantly improved their survival. This improvement was associated with the induction of BORIS-specific cellular immune responses measured by T-helper cell proliferation and INFγ secretion. The re-challenging of cured rats with the same 13762 cells indicated that the immune response prevented tumor growth. Thus, a therapeutic vaccine against rat BORIS showed high efficacy in treating the rat 13762 carcinoma. These data suggest that targeting BORIS can lead to the elimination of mammary tumors and cure animals even though BORIS expression is detected only in cancer stem cells.


Asunto(s)
Neoplasias Mamarias Animales , Vacunas , Animales , Masculino , Ratones , Ratas , Proteínas de Unión al ADN/metabolismo , Inmunoterapia/métodos , Factores de Transcripción
4.
Front Oncol ; 14: 1407003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135998

RESUMEN

Background: A novel approach for molecular residual disease (MRD) detection and treatment monitoring is needed in diffuse large B-cell lymphoma (DLBCL) to identify patients with a poor prognosis. We performed a retrospective evaluation of commercial ctDNA testing in patients with stage I-IV DLBCL to evaluate the prognostic and predictive role of tumor-informed ctDNA assessment. Methods: A personalized and tumor-informed multiplex PCR assay (Signatera™ bespoke mPCR NGS assay) was used for ctDNA detection and quantification. Results: In total, 50 patients (median age: 59 years; median follow-up: 12.68 months) were analyzed, of which 41 had pretreatment time points with ctDNA detected in 95% (39/41). Baseline ctDNA levels correlated with R-IPI scores and stage. ctDNA clearance during first-line therapy was predictive of improved therapy responses and outcomes (EFS, HR: 6.5, 95% CI: 1.9-22, p=0.003 and OS, HR: 22, 95% CI: 2.5-191, p=0.005). Furthermore, 48% (13/27) of patients cleared their ctDNA following the first cycle of treatment. Patients who cleared their ctDNA, irrespective of their R-IPI score, had superior outcomes compared to ctDNA-positive patients. ctDNA clearance outperformed other factors associated with EFS in multivariate analysis (HR: 49.76, 95% CI:1.1-2225.6, p=0.044). Finally, ctDNA clearance predicted complete response (CR)/no evidence of disease (NED) on average 97 days (range: 0-14.7 months) ahead of imaging/biopsy. Conclusion: ctDNA testing in patients with DLBCL is predictive of patient outcomes and may enable personalized surveillance, intervention, and/or trial options.

5.
Genome Biol ; 25(1): 40, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297316

RESUMEN

BACKGROUND: Pervasive usage of alternative promoters leads to the deregulation of gene expression in carcinogenesis and may drive the emergence of new genes in spermatogenesis. However, little is known regarding the mechanisms underpinning the activation of alternative promoters. RESULTS: Here we describe how alternative cancer-testis-specific transcription is activated. We show that intergenic and intronic CTCF binding sites, which are transcriptionally inert in normal somatic cells, could be epigenetically reprogrammed into active de novo promoters in germ and cancer cells. BORIS/CTCFL, the testis-specific paralog of the ubiquitously expressed CTCF, triggers the epigenetic reprogramming of CTCF sites into units of active transcription. BORIS binding initiates the recruitment of the chromatin remodeling factor, SRCAP, followed by the replacement of H2A histone with H2A.Z, resulting in a more relaxed chromatin state in the nucleosomes flanking the CTCF binding sites. The relaxation of chromatin around CTCF binding sites facilitates the recruitment of multiple additional transcription factors, thereby activating transcription from a given binding site. We demonstrate that the epigenetically reprogrammed CTCF binding sites can drive the expression of cancer-testis genes, long noncoding RNAs, retro-pseudogenes, and dormant transposable elements. CONCLUSIONS: Thus, BORIS functions as a transcription factor that epigenetically reprograms clustered CTCF binding sites into transcriptional start sites, promoting transcription from alternative promoters in both germ cells and cancer cells.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Masculino , Humanos , Proteínas de Unión al ADN/metabolismo , Factor de Unión a CCCTC/metabolismo , Factores de Transcripción/metabolismo , Histonas/metabolismo , Cromatina , Sitios de Unión
6.
Eur Urol Oncol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39013741

RESUMEN

BACKGROUND AND OBJECTIVE: Despite curative-intent radical cystectomy (RC), patients with muscle-invasive bladder cancer (MIBC) are at high risk of recurrence. Biomarkers are urgently needed to refine prognostication and selection of appropriate perioperative systemic therapies. Our aim was to evaluate the prognostic and predictive value of tumor-informed circulating tumor DNA (ctDNA) results in a multicenter cohort of patients with bladder cancer who underwent RC. METHODS: We performed a retrospective analysis of real-world data for a commercial ctDNA test (Signatera; Natera, Austin, TX, USA) performed in 167 patients (852 plasma samples) before RC and during molecular residual disease (MRD; adjuvant decision) and surveillance windows. We assessed the correlation between recurrence and ctDNA status before and after RC using Cox regression analysis. RESULTS AND LIMITATIONS: During study-defined postoperative MRD and surveillance windows, detectable ctDNA was associated with shorter disease-free survival (DFS) when compared to undetectable ctDNA (MRD: hazard ratio 6.93; p < 0.001; surveillance: hazard ratio 23.02; p < 0.001). Of note, patients with undetectable ctDNA did not appear to benefit from adjuvant therapy (p = 0.34). Detectable ctDNA in the pre-RC (p = 0.045), MRD (p = 0.002), and surveillance (p < 0.001) windows was the only risk factor independently associated with shorter DFS. Limitations include the retrospective and nonrandomized nature of the study. CONCLUSIONS: ctDNA testing in patients with bladder cancer undergoing RC was prognostic and potentially predictive. Identification of patients at high risk of recurrence may aid in patient counseling and decision-making. PATIENT SUMMARY: We found that outcomes for patients with muscle-invasive bladder cancer are strongly linked to detection of tumor DNA in blood samples. The results show the value of tumor-informed testing for tumor DNA in blood for decisions on the best treatment for each individual patient.

7.
Clin Cancer Res ; 28(19): 4278-4291, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-35736214

RESUMEN

PURPOSE: Patients with MYC-amplified medulloblastoma (MB) have poor prognosis and frequently develop recurrence, thus new therapeutic approaches to prevent recurrence are needed. EXPERIMENTAL DESIGN: We evaluated OLIG2 expression in a panel of mouse Myc-driven MB tumors, patient MB samples, and patient-derived xenograft (PDX) tumors and analyzed radiation sensitivity in OLIG2-high and OLIG2-low tumors in PDX lines. We assessed the effect of inhibition of OLIG2 by OLIG2-CRISPR or the small molecule inhibitor CT-179 combined with radiotherapy on tumor progression in PDX models. RESULTS: We found that MYC-associated MB can be stratified into OLIG2-high and OLIG2-low tumors based on OLIG2 protein expression. In MYC-amplified MB PDX models, OLIG2-low tumors were sensitive to radiation and rarely relapsed, whereas OLIG2-high tumors were resistant to radiation and consistently developed recurrence. In OLIG2-high tumors, irradiation eliminated the bulk of tumor cells; however, a small number of tumor cells comprising OLIG2- tumor cells and rare OLIG2+ tumor cells remained in the cerebellar tumor bed when examined immediately post-irradiation. All animals harboring residual-resistant tumor cells developed relapse. The relapsed tumors mirrored the cellular composition of the primary tumors with enriched OLIG2 expression. Further studies demonstrated that OLIG2 was essential for recurrence, as OLIG2 disruption with CRISPR-mediated deletion or with the small molecule inhibitor CT-179 prevented recurrence from the residual radioresistant tumor cells. CONCLUSIONS: Our studies reveal that OLIG2 is a biomarker and an effective therapeutic target in a high-risk subset of MYC-amplified MB, and OLIG2 inhibitor combined with radiotherapy represents a novel effective approach for treating this devastating disease.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Animales , Biomarcadores , Línea Celular Tumoral , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Modelos Animales de Enfermedad , Humanos , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/radioterapia , Ratones , Recurrencia Local de Neoplasia/genética , Factor de Transcripción 2 de los Oligodendrocitos/genética , Factor de Transcripción 2 de los Oligodendrocitos/uso terapéutico , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
8.
Nat Commun ; 12(1): 6689, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795224

RESUMEN

Neoantigen discovery in pediatric brain tumors is hampered by their low mutational burden and scant tissue availability. Here we develop a proteogenomic approach combining tumor DNA/RNA sequencing and mass spectrometry proteomics to identify tumor-restricted (neoantigen) peptides arising from multiple genomic aberrations to generate a highly target-specific, autologous, personalized T cell immunotherapy. Our data indicate that aberrant splice junctions are the primary source of neoantigens in medulloblastoma, a common pediatric brain tumor. Proteogenomically identified tumor-specific peptides are immunogenic and generate MHC II-based T cell responses. Moreover, polyclonal and polyfunctional T cells specific for tumor-specific peptides effectively eliminate tumor cells in vitro. Targeting tumor-specific antigens obviates the issue of central immune tolerance while potentially providing a safety margin favoring combination with other immune-activating therapies. These findings demonstrate the proteogenomic discovery of immunogenic tumor-specific peptides and lay the groundwork for personalized targeted T cell therapies for children with brain tumors.


Asunto(s)
Antígenos de Neoplasias/inmunología , Neoplasias Encefálicas/terapia , Inmunoterapia/métodos , Medicina de Precisión/métodos , Proteogenómica/métodos , Linfocitos T/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Células Cultivadas , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/terapia , Niño , Cromatografía Liquida/métodos , Biología Computacional/métodos , Humanos , Espectrometría de Masas/métodos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/terapia , Mutación , Péptidos/análisis , Péptidos/inmunología , RNA-Seq/métodos
9.
Nat Commun ; 12(1): 3846, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158481

RESUMEN

CTCF is a key organizer of the 3D genome. Its specialized paralog, BORIS, heterodimerizes with CTCF but is expressed only in male germ cells and in cancer states. Unexpectedly, BORIS-null mice have only minimal germ cell defects. To understand the CTCF-BORIS relationship, mouse models with varied CTCF and BORIS levels were generated. Whereas Ctcf+/+Boris+/+, Ctcf+/-Boris+/+, and Ctcf+/+Boris-/- males are fertile, Ctcf+/-Boris-/- (Compound Mutant; CM) males are sterile. Testes with combined depletion of both CTCF and BORIS show reduced size, defective meiotic recombination, increased apoptosis, and malformed spermatozoa. Although CM germ cells exhibit only 25% of CTCF WT expression, chromatin binding of CTCF is preferentially lost from CTCF-BORIS heterodimeric sites. Furthermore, CM testes lose the expression of a large number of spermatogenesis genes and gain the expression of developmentally inappropriate genes that are "toxic" to fertility. Thus, a combined action of CTCF and BORIS is required to both repress pre-meiotic genes and activate post-meiotic genes for a complete spermatogenesis program.


Asunto(s)
Factor de Unión a CCCTC/genética , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Espermatogénesis/genética , Testículo/metabolismo , Animales , Factor de Unión a CCCTC/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Infertilidad Masculina/genética , Masculino , Meiosis/genética , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Unión Proteica , RNA-Seq/métodos , Recombinación Genética , Espermatozoides/metabolismo
10.
Mol Cancer Ther ; 20(6): 1199-1209, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33722850

RESUMEN

Medulloblastoma (MB) is the most common malignant pediatric brain tumor. MYC-driven MBs, commonly found in the group 3 MB, are aggressive and metastatic with the worst prognosis. Modeling MYC-driven MB is the foundation of therapeutic development. Here, we applied a synthetic mRNA-driven strategy to generate neuronal precursors from human-induced pluripotent stem cells (iPSCs). These neuronal precursors were transformed by the MYC oncogene combined with p53 loss of function to establish an MYC-driven MB model recapitulating the histologic and transcriptomic hallmarks of group 3 MB. We further show that the marine compound Frondoside A (FA) effectively inhibits this MYC-driven MB model without affecting isogenic neuronal precursors with undetectable MYC expression. Consistent results from a panel of MB models support that MYC levels are positively correlated with FA's antitumor potency. Next, we show that FA suppresses MYC expression and its downstream gene targets in MB cells, suggesting a potential mechanism underlying FA's inhibitory effects on MYC-driven cancers. In orthotopic xenografts of MYC-driven MB, intratumoral FA administration potently induces cytotoxicity in tumor xenografts, significantly extends the survival of tumor-bearing animals, and enhances the recruitment of microglia/macrophages and cytotoxic T lymphocytes to tumors. Moreover, we show that MYC levels also predict FA potency in glioblastoma and non-small cell lung cancer cells. Taken together, this study provides an efficient human iPSC-based strategy for personalizable cancer modeling, widely applicable to mechanistic studies (e.g., genetic predisposition to cancer) and drug discovery. Our preclinical results justify the clinical translation of FA in treating MYC-driven MB and other human cancers.


Asunto(s)
Glicósidos/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Meduloblastoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-myc/genética , Triterpenos/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Meduloblastoma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Neuro Oncol ; 22(1): 152-162, 2020 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-31562520

RESUMEN

BACKGROUND: The germline genetic events underpinning medulloblastoma (MB) initiation, and therefore the ability to determine who is at risk, are still unknown for the majority of cases. Microsatellites are short repeated sequences that make up ~3% of the genome. Repeat lengths vary among individuals and are often nonrandomly associated with disease, including several cancers such as breast, glioma, lung, and ovarian. Due to their effects on gene function, they have been called the "tuning knobs of the genome." METHODS: We have developed a novel approach for identifying a microsatellite-based signature to differentiate MB patients from controls using germline DNA. RESULTS: Analyzing germline whole exome sequencing data from a training set of 120 MB subjects and 425 controls, we identified 139 individual microsatellite loci whose genotypes differ significantly between the groups. Using a genetic algorithm, we identified a subset of 43 microsatellites that distinguish MB subjects from controls with a sensitivity and specificity of 92% and 88%, respectively. This microsatellite signature was validated in an independent dataset consisting of 102 subjects and 428 controls, with comparable sensitivity and specificity of 95% and 90%, respectively. Analysis of the allele genotypes of those 139 informative loci demonstrates that their association with MB is a consequence of individual microsatellites' genotypes rather than their hypermutability. Finally, an analysis of the genes harboring these microsatellite loci reveals cellular functions important for tumorigenesis. CONCLUSION: This study demonstrates that MB-specific germline microsatellite variations mark those at risk for MB development and suggests mechanisms of predisposition.


Asunto(s)
Neoplasias Cerebelosas/genética , Predisposición Genética a la Enfermedad/genética , Meduloblastoma/genética , Repeticiones de Microsatélite/genética , Algoritmos , Niño , Femenino , Genotipo , Humanos , Masculino , Transcriptoma , Secuenciación del Exoma
12.
Cancer Res ; 79(8): 1967-1980, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30862721

RESUMEN

A subset of group 3 medulloblastoma frequently harbors amplification or overexpression of MYC lacking additional focal aberrations, yet it remains unclear whether MYC overexpression alone can induce tumorigenesis and which cells give rise to these tumors. Here, we showed that astrocyte progenitors in the early postnatal cerebellum were susceptible to transformation by MYC. The resulting tumors specifically resembled human group 3 medulloblastoma based on histology and gene-expression profiling. Gene-expression analysis of MYC-driven medulloblastoma cells revealed altered glucose metabolic pathways with marked overexpression of lactate dehydrogenase A (LDHA). LDHA abundance correlated positively with MYC expression and was associated with poor prognosis in human group 3 medulloblastoma. Inhibition of LDHA significantly reduced growth of both mouse and human MYC-driven tumors but had little effect on normal cerebellar cells or SHH-associated medulloblastoma. By generating a new mouse model, we demonstrated for the first time that astrocyte progenitors can be transformed by MYC and serve as the cells of origin for group 3 medulloblastoma. Moreover, we identified LDHA as a novel, specific therapeutic target for this devastating disease. SIGNIFICANCE: Insights from a new model identified LDHA as a novel target for group 3 medulloblastoma, paving the way for the development of effective therapies against this disease.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Transformación Celular Neoplásica/patología , Neoplasias Cerebelosas/patología , Meduloblastoma/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción SOXB1/metabolismo , Células Madre/patología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/fisiología , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1/genética , Transducción de Señal , Células Madre/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Acta Neuropathol Commun ; 6(1): 48, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29880060

RESUMEN

Genomic characterization has begun to redefine diagnostic classifications of cancers. However, it remains a challenge to infer disease phenotypes from genomic alterations alone. To help realize the promise of genomics, we have performed a quantitative proteomics investigation using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and 41 tissue samples spanning the 4 genomically based subgroups of medulloblastoma and control cerebellum. We have identified and quantitated thousands of proteins across these groups and find that we are able to recapitulate the genomic subgroups based upon subgroup restricted and differentially abundant proteins while also identifying subgroup specific protein isoforms. Integrating our proteomic measurements with genomic data, we calculate a poor correlation between mRNA and protein abundance. Using EPIC 850 k methylation array data on the same tissues, we also investigate the influence of copy number alterations and DNA methylation on the proteome in an attempt to characterize the impact of these genetic features on the proteome. Reciprocally, we are able to use the proteome to identify which genomic alterations result in altered protein abundance and thus are most likely to impact biology. Finally, we are able to assemble protein-based pathways yielding potential avenues for clinical intervention. From these, we validate the EIF4F cap-dependent translation pathway as a novel druggable pathway in medulloblastoma. Thus, quantitative proteomics complements genomic platforms to yield a more complete understanding of functional tumor biology and identify novel therapeutic targets for medulloblastoma.


Asunto(s)
Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Meduloblastoma/genética , Meduloblastoma/metabolismo , Proteínas de Neoplasias/genética , Proteogenómica/métodos , Cromatografía Liquida , Metilación de ADN , Femenino , Humanos , Masculino , Proteínas de Neoplasias/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteoma , ARN Mensajero , Espectrometría de Masas en Tándem
14.
Sci Rep ; 7: 41279, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28145452

RESUMEN

Despite sharing the same sequence specificity in vitro and in vivo, CCCTC-binding factor (CTCF) and its paralog brother of the regulator of imprinted sites (BORIS) are simultaneously expressed in germ cells. Recently, ChIP-seq analysis revealed two classes of CTCF/BORIS-bound regions: single CTCF target sites (1xCTSes) that are bound by CTCF alone (CTCF-only) or double CTCF target sites (2xCTSes) simultaneously bound by CTCF and BORIS (CTCF&BORIS) or BORIS alone (BORIS-only) in germ cells and in BORIS-positive somatic cancer cells. BORIS-bound regions (CTCF&BORIS and BORIS-only sites) are, on average, enriched for RNA polymerase II (RNAPII) binding and histone retention in mature spermatozoa relative to CTCF-only sites, but little else is known about them. We show that subsets of CTCF&BORIS and BORIS-only sites are occupied by several testis-specific transcriptional regulators (TSTRs) and associated with highly expressed germ cell-specific genes and histone retention in mature spermatozoa. We also demonstrate a physical interaction between BORIS and one of the analyzed TSTRs, TATA-binding protein (TBP)-associated factor 7-like (TAF7L). Our data suggest that CTCF and BORIS cooperate with additional TSTRs to regulate gene expression in developing male gametes and histone retention in mature spermatozoa, potentially priming certain regions of the genome for rapid activation following fertilization.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Proteínas de Unión al ADN/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Transcripción Genética , Animales , Regulación de la Expresión Génica , Células HEK293 , Histonas/metabolismo , Humanos , Masculino , Ratones , Proteínas Nucleares/metabolismo , Especificidad de Órganos , Unión Proteica , Factores de Transcripción del Factor Regulador X/metabolismo , Espermátides/metabolismo , Espermatozoides/citología , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo
17.
Genome Biol ; 16: 161, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26268681

RESUMEN

BACKGROUND: CTCF and BORIS (CTCFL), two paralogous mammalian proteins sharing nearly identical DNA binding domains, are thought to function in a mutually exclusive manner in DNA binding and transcriptional regulation. RESULTS: Here we show that these two proteins co-occupy a specific subset of regulatory elements consisting of clustered CTCF binding motifs (termed 2xCTSes). BORIS occupancy at 2xCTSes is largely invariant in BORIS-positive cancer cells, with the genomic pattern recapitulating the germline-specific BORIS binding to chromatin. In contrast to the single-motif CTCF target sites (1xCTSes), the 2xCTS elements are preferentially found at active promoters and enhancers, both in cancer and germ cells. 2xCTSes are also enriched in genomic regions that escape histone to protamine replacement in human and mouse sperm. Depletion of the BORIS gene leads to altered transcription of a large number of genes and the differentiation of K562 cells, while the ectopic expression of this CTCF paralog leads to specific changes in transcription in MCF7 cells. CONCLUSIONS: We discover two functionally and structurally different classes of CTCF binding regions, 2xCTSes and 1xCTSes, revealed by their predisposition to bind BORIS. We propose that 2xCTSes play key roles in the transcriptional program of cancer and germ cells.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Factor de Unión a CCCTC , Línea Celular , Cromatina/química , ADN/química , ADN/metabolismo , Genoma , Humanos , Células K562 , Masculino , Ratones , Neoplasias/genética , Motivos de Nucleótidos , Unión Proteica , Espermátides/metabolismo , Espermatozoides/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA