Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 19(5): e3001221, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33939688

RESUMEN

Premature termination codons (PTC) cause over 10% of genetic disease cases. Some aminoglycosides that bind to the ribosome decoding center can induce PTC readthrough and restore low levels of full-length functional proteins. However, concomitant inhibition of protein synthesis limits the extent of PTC readthrough that can be achieved by aminoglycosides like G418. Using a cell-based screen, we identified a small molecule, the phenylpyrazoleanilide Y-320, that potently enhances TP53, DMD, and COL17A1 PTC readthrough by G418. Unexpectedly, Y-320 increased cellular protein levels and protein synthesis, measured by SYPRO Ruby protein staining and puromycin labeling, as well as ribosome biogenesis measured using antibodies to rRNA and ribosomal protein S6. Y-320 did not increase the rate of translation elongation and it exerted its effects independently of mTOR signaling. At the single cell level, exposure to Y-320 and G418 increased ribosome content and protein synthesis which correlated strongly with PTC readthrough. As a single agent, Y-320 did not affect translation fidelity measured using a luciferase reporter gene but it enhanced misincorporation by G418. RNA-seq data showed that Y-320 up-regulated the expression of CXC chemokines CXCL10, CXCL8, CXCL2, CXCL11, CXCL3, CXCL1, and CXCL16. Several of these chemokines exert their cellular effects through the receptor CXCR2 and the CXCR2 antagonist SB225002 reduced cellular protein levels and PTC readthrough in cells exposed to Y-320 and G418. These data show that the self-limiting nature of PTC readthrough by G418 can be compensated by Y-320, a potent enhancer of PTC readthrough that increases ribosome biogenesis and protein synthesis. They also support a model whereby increased PTC readthrough is enabled by increased protein synthesis mediated by an autocrine chemokine signaling pathway. The findings also raise the possibility that inflammatory processes affect cellular propensity to readthrough agents and that immunomodulatory drugs like Y-320 might find application in PTC readthrough therapy.


Asunto(s)
Aminoglicósidos/farmacología , Codón sin Sentido/genética , Ribosomas/metabolismo , Aminoglicósidos/metabolismo , Aminoglicósidos/fisiología , Línea Celular , Quimiocinas CXC/efectos de los fármacos , Quimiocinas CXC/metabolismo , Codón sin Sentido/metabolismo , Codón de Terminación , Gentamicinas/farmacología , Humanos , Mutación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína , Ribosomas/efectos de los fármacos
2.
J Biol Chem ; 298(2): 101546, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34999117

RESUMEN

Nonsense mutations, which occur in ∼11% of patients with genetic disorders, introduce premature termination codons (PTCs) that lead to truncated proteins and promote nonsense-mediated mRNA decay. Aminoglycosides such as G418 permit PTC readthrough and so may be used to address this problem. However, their effects are variable between patients, making clinical use of aminoglycosides challenging. In this study, we tested whether TRPC nonselective cation channels contribute to the variable PTC readthrough effect of aminoglycosides by controlling their cellular uptake. Indeed, a recently reported selective TRPC5 inhibitor, AC1903, consistently suppressed G418 uptake and G418-induced PTC readthrough in the DMS-114 cancer cell line and junctional epidermolysis bullosa (JEB) patient-derived keratinocytes. Interestingly, the effect of AC1903 in DMS-114 cells was mimicked by nonselective TRPC inhibitors, but not by well-characterized inhibitors of TRPC1/4/5 (Pico145, GFB-8438) or TRPC3/6/7 (SAR7334), suggesting that AC1903 may work through additional or undefined targets. Indeed, in our experiments, AC1903 inhibited multiple TRPC channels including TRPC3, TRPC4, TRPC5, TRPC6, TRPC4-C1, and TRPC5-C1, as well as endogenous TRPC1:C4 channels in A498 renal cancer cells, all with low micromolar IC50 values (1.8-18 µM). We also show that AC1903 inhibited TRPV4 channels, but had weak or no effects on TRPV1 and no effect on the nonselective cation channel PIEZO1. Our study reveals that AC1903 has previously unrecognized targets, which need to be considered when interpreting results from experiments with this compound. In addition, our data strengthen the hypothesis that nonselective calcium channels are involved in aminoglycoside uptake.


Asunto(s)
Aminoglicósidos , Codón sin Sentido , Indazoles , Canales Catiónicos TRPC , Aminoglicósidos/farmacología , Codón sin Sentido/efectos de los fármacos , Humanos , Indazoles/farmacología , Inhibidores de la Síntesis de la Proteína , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo
3.
Nucleic Acids Res ; 49(7): 3692-3708, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33764477

RESUMEN

Premature termination codon (PTC) readthrough is considered a potential treatment for genetic diseases caused by nonsense mutations. High concentrations of aminoglycosides induce low levels of PTC readthrough but also elicit severe toxicity. Identifying compounds that enhance PTC readthrough by aminoglycosides or reduce their toxicity is a continuing challenge. In humans, a binary complex of eukaryotic release factors 1 (eRF1) and 3 (eRF3a or eRF3b) mediates translation termination. They also participate in the SURF (SMG1-UPF1-eRF1-eRF3) complex assembly involved in nonsense-mediated mRNA decay (NMD). We show that PTC readthrough by aminoglycoside G418 is considerably enhanced by eRF3a and eRF3b siRNAs and cereblon E3 ligase modulators CC-885 and CC-90009, which induce proteasomal degradation of eRF3a and eRF3b. eRF3 degradation also reduces eRF1 levels and upregulates UPF1 and selectively stabilizes TP53 transcripts bearing a nonsense mutation over WT, indicating NMD suppression. CC-90009 is considerably less toxic than CC-885 and it enhances PTC readthrough in combination with aminoglycosides in mucopolysaccharidosis type I-Hurler, late infantile neuronal ceroid lipofuscinosis, Duchenne muscular dystrophy and junctional epidermolysis bullosa patient-derived cells with nonsense mutations in the IDUA, TPP1, DMD and COL17A1 genes, respectively. Combination of CC-90009 with aminoglycosides such as gentamicin or ELX-02 may have potential for PTC readthrough therapy.


Asunto(s)
Aminoglicósidos/farmacología , Codón sin Sentido , Enfermedades Genéticas Congénitas , Factores de Terminación de Péptidos/metabolismo , Línea Celular , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Humanos , Tripeptidil Peptidasa 1
4.
J Biol Chem ; 296: 100284, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33450226

RESUMEN

ETV6 is an E26 transformation specific family transcriptional repressor that self-associates by its PNT domain to facilitate cooperative DNA binding. Chromosomal translocations frequently generate constitutively active oncoproteins with the ETV6 PNT domain fused to the kinase domain of one of many protein tyrosine kinases. Although an attractive target for therapeutic intervention, the propensity of the ETV6 PNT domain to polymerize via the tight head-to-tail association of two relatively flat interfaces makes it challenging to identify suitable small molecule inhibitors of this protein-protein interaction. Herein, we provide a comprehensive biophysical characterization of the ETV6 PNT domain interaction interfaces to aid future drug discovery efforts and help define the mechanisms by which its self-association mediates transcriptional repression. Using NMR spectroscopy, X-ray crystallography, and molecular dynamics simulations, along with amide hydrogen exchange measurements, we demonstrate that monomeric PNT domain variants adopt very stable helical bundle folds that do not change in conformation upon self-association into heterodimer models of the ETV6 polymer. Surface plasmon resonance-monitored alanine scanning mutagenesis studies identified hot spot regions within the self-association interfaces. These regions include both central hydrophobic residues and flanking salt-bridging residues. Collectively, these studies indicate that small molecules targeted to these hydrophobic or charged regions within the relatively rigid interfaces could potentially serve as orthosteric inhibitors of ETV6 PNT domain polymerization.


Asunto(s)
Alanina/química , Ácido Aspártico/química , Ácido Glutámico/química , Proteínas Proto-Oncogénicas c-ets/química , Proteínas Represoras/química , Transcripción Genética , Valina/química , Alanina/metabolismo , Sustitución de Aminoácidos , Ácido Aspártico/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ácido Glutámico/metabolismo , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Termodinámica , Valina/metabolismo , Proteína ETS de Variante de Translocación 6
5.
J Virol ; 95(11)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33762409

RESUMEN

Influenza A viruses (IAVs) utilize host shutoff mechanisms to limit antiviral gene expression and redirect translation machinery to the synthesis of viral proteins. Previously, we showed that IAV replication is sensitive to protein synthesis inhibitors that block translation initiation and induce formation of cytoplasmic condensates of untranslated messenger ribonucleoprotein complexes called stress granules (SGs). In this study, using an image-based high-content screen, we identified two thiopurines, 6-thioguanine (6-TG) and 6-thioguanosine (6-TGo), that triggered SG formation in IAV-infected cells and blocked IAV replication in a dose-dependent manner without eliciting SG formation in uninfected cells. 6-TG and 6-TGo selectively disrupted the synthesis and maturation of IAV glycoproteins hemagglutinin (HA) and neuraminidase (NA) without affecting the levels of the viral RNAs that encode them. By contrast, these thiopurines had minimal effect on other IAV proteins or the global host protein synthesis. Disruption of IAV glycoprotein accumulation by 6-TG and 6-TGo correlated with activation of unfolded protein response (UPR) sensors activating transcription factor-6 (ATF6), inositol requiring enzyme-1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), leading to downstream UPR gene expression. Treatment of infected cells with the chemical chaperone 4-phenylbutyric acid diminished thiopurine-induced UPR activation and partially restored the processing and accumulation of HA and NA. By contrast, chemical inhibition of the integrated stress response downstream of PERK restored accumulation of NA monomers but did not restore processing of viral glycoproteins. Genetic deletion of PERK enhanced the antiviral effect of 6-TG without causing overt cytotoxicity, suggesting that while UPR activation correlates with diminished viral glycoprotein accumulation, PERK could limit the antiviral effects of drug-induced ER stress. Taken together, these data indicate that 6-TG and 6-TGo are effective host-targeted antivirals that trigger the UPR and selectively disrupt accumulation of viral glycoproteins.IMPORTANCESecreted and transmembrane proteins are synthesized in the endoplasmic reticulum (ER), where they are folded and modified prior to transport. Many viruses rely on the ER for the synthesis and processing of viral glycoproteins that will ultimately be incorporated into viral envelopes. Viral burden on the ER can trigger the unfolded protein response (UPR). Much remains to be learned about how viruses co-opt the UPR to ensure efficient synthesis of viral glycoproteins. Here, we show that two FDA-approved thiopurine drugs, 6-TG and 6-TGo, induce the UPR, which represents a previously unrecognized effect of these drugs on cell physiology. This thiopurine-mediated UPR activation blocks influenza virus replication by impeding viral glycoprotein accumulation. Our findings suggest that 6-TG and 6-TGo may have broad antiviral effect against enveloped viruses that require precise tuning of the UPR to support viral glycoprotein synthesis.

6.
Biochem J ; 476(3): 499-512, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30622151

RESUMEN

Cathepsin K (CatK) is a cysteine protease and drug target for skeletal disorders that is known for its potent collagenase and elastase activity. The formation of oligomeric complexes of CatK in the presence of glycosaminoglycans has been associated with its collagenase activity. Inhibitors that disrupt these complexes can selectively block the collagenase activity without interfering with the other regulatory proteolytic activities of the enzyme. Here, we have developed a fluorescence polarization (FP) assay to screen 4761 compounds for substrate-specific ectosteric collagenase inhibitors of CatK. A total of 38 compounds were identified that block the collagenase activity without interfering with the hydrolysis of active site substrates such as the synthetic peptide substrate, benzyloxycarbonyl-Phe-Arg-7-amido-4-methylcoumarin, and gelatin. The identified inhibitors can be divided into two main classes, negatively charged and polyaromatic compounds which suggest the binding to different ectosteric sites. Two of the inhibitors were highly effective in preventing the bone-resorption activity of CatK in osteoclasts. Interestingly, some of the ectosteric inhibitors were capable of differentiating between the collagenase and elastase activity of CatK depending on the ectosteric site utilized by the compound. Owing to their substrate-specific selectivity, ectosteric inhibitors represent a viable alternative to side effect-prone active site-directed inhibitors.


Asunto(s)
Catepsina K/antagonistas & inhibidores , Péptidos/química , Inhibidores de Proteasas/química , Animales , Catepsina K/química , Catepsina K/metabolismo , Bovinos , Humanos , Osteoclastos/enzimología , Especificidad por Sustrato
7.
Proc Natl Acad Sci U S A ; 114(13): 3479-3484, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28289221

RESUMEN

Nonsense mutations underlie about 10% of rare genetic disease cases. They introduce a premature termination codon (PTC) and prevent the formation of full-length protein. Pharmaceutical gentamicin, a mixture of several related aminoglycosides, is a frequently used antibiotic in humans that can induce PTC readthrough and suppress nonsense mutations at high concentrations. However, testing of gentamicin in clinical trials has shown that safe doses of this drug produce weak and variable readthrough activity that is insufficient for use as therapy. In this study we show that the major components of pharmaceutical gentamicin lack PTC readthrough activity but the minor component gentamicin B1 (B1) is a potent readthrough inducer. Molecular dynamics simulations reveal the importance of ring I of B1 in establishing a ribosome configuration that permits pairing of a near-cognate complex at a PTC. B1 induced readthrough at all three nonsense codons in cultured cancer cells with TP53 (tumor protein p53) mutations, in cells from patients with nonsense mutations in the TPP1 (tripeptidyl peptidase 1), DMD (dystrophin), SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), and COL7A1 (collagen type VII alpha 1 chain) genes, and in an in vivo tumor xenograft model. The B1 content of pharmaceutical gentamicin is highly variable and major gentamicins suppress the PTC readthrough activity of B1. Purified B1 provides a consistent and effective source of PTC readthrough activity to study the potential of nonsense suppression for treatment of rare genetic disorders.


Asunto(s)
Antibacterianos/farmacología , Codón sin Sentido/genética , Gentamicinas/farmacología , Mutación/efectos de los fármacos , Aminopeptidasas/genética , Antibacterianos/química , Línea Celular Tumoral , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/genética , Distrofina/genética , Gentamicinas/química , Humanos , Serina Proteasas/genética , Tripeptidil Peptidasa 1 , Proteína p53 Supresora de Tumor/genética
8.
Molecules ; 25(12)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599753

RESUMEN

The increasing prevalence of drug-resistant influenza viruses emphasizes the need for new antiviral countermeasures. The M2 protein of influenza A is a proton-gated, proton-selective ion channel, which is essential for influenza replication and an established antiviral target. However, all currently circulating influenza A virus strains are now resistant to licensed M2-targeting adamantane drugs, primarily due to the widespread prevalence of an M2 variant encoding a serine to asparagine 31 mutation (S31N). To identify new chemical leads that may target M2(S31N), we performed a virtual screen of molecules from two natural product libraries and identified chebulagic acid as a candidate M2(S31N) inhibitor and influenza antiviral. Chebulagic acid selectively restores growth of M2(S31N)-expressing yeast. Molecular modeling also suggests that chebulagic acid hydrolysis fragments preferentially interact with the highly-conserved histidine residue within the pore of M2(S31N) but not adamantane-sensitive M2(S31). In contrast, chebulagic acid inhibits in vitro influenza A replication regardless of M2 sequence, suggesting that it also acts on other influenza targets. Taken together, results implicate chebulagic acid and/or its hydrolysis fragments as new chemical leads for M2(S31N) and influenza-directed antiviral development.


Asunto(s)
Antivirales/farmacología , Benzopiranos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Glucósidos/farmacología , Virus de la Influenza A/efectos de los fármacos , Proteínas de la Matriz Viral/antagonistas & inhibidores , Amantadina/química , Amantadina/farmacología , Animales , Antivirales/química , Perros , Farmacorresistencia Viral/efectos de los fármacos , Farmacorresistencia Viral/genética , Histidina/química , Virus de la Influenza A/fisiología , Células de Riñón Canino Madin Darby , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Replicación Viral/efectos de los fármacos
9.
Nucleic Acids Res ; 44(14): 6583-98, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27407112

RESUMEN

Nonsense mutations introduce premature termination codons and underlie 11% of genetic disease cases. High concentrations of aminoglycosides can restore gene function by eliciting premature termination codon readthrough but with low efficiency. Using a high-throughput screen, we identified compounds that potentiate readthrough by aminoglycosides at multiple nonsense alleles in yeast. Chemical optimization generated phthalimide derivative CDX5-1 with activity in human cells. Alone, CDX5-1 did not induce readthrough or increase TP53 mRNA levels in HDQ-P1 cancer cells with a homozygous TP53 nonsense mutation. However, in combination with aminoglycoside G418, it enhanced readthrough up to 180-fold over G418 alone. The combination also increased readthrough at all three nonsense codons in cancer cells with other TP53 nonsense mutations, as well as in cells from rare genetic disease patients with nonsense mutations in the CLN2, SMARCAL1 and DMD genes. These findings open up the possibility of treating patients across a spectrum of genetic diseases caused by nonsense mutations.


Asunto(s)
Aminoglicósidos/farmacología , Codón sin Sentido/genética , Saccharomyces cerevisiae/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Alelos , Aminoglicósidos/química , Enfermedades Genéticas Congénitas/genética , Células HCT116 , Homocigoto , Humanos , Paromomicina/farmacología , Ftalimidas/química , Ftalimidas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Factores de Tiempo , Tripeptidil Peptidasa 1 , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
10.
PLoS Pathog ; 8(5): e1002691, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22589723

RESUMEN

Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment.


Asunto(s)
Autofagia/efectos de los fármacos , Macrófagos/microbiología , Mycobacterium tuberculosis/crecimiento & desarrollo , Proteínas/metabolismo , Tiazoles/farmacología , Antiparasitarios/farmacología , Línea Celular , Células HEK293 , Humanos , Macrófagos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Monocitos/microbiología , Complejos Multiproteicos , Mycobacterium tuberculosis/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , Nitrocompuestos , Fagosomas/metabolismo , Serina-Treonina Quinasas TOR , Tuberculosis/tratamiento farmacológico , Tuberculosis/prevención & control
11.
Exp Cell Res ; 319(6): 908-17, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23333560

RESUMEN

Individual tumor cells utilize one of two modes of motility to invade the extracellular matrix, mesenchymal or amoeboid. We have determined that the diterpenoid genkwanine M (GENK) enhances the mesenchymal mode of cell motility that is intrinsic to HT-1080 osteosarcoma cells, stimulates a mesenchymal mode of motility in stationary MDA-MB-453 breast carcinoma cells, and induces a shift to a mesenchymal mode of cell motility in LS174T colorectal adenocarcinoma cells that normally utilize the alternate amoeboid mode of motility. The ability of GENK to stimulate or induce mesenchymal motility was preceded by a rapid cell spreading, elongation and polarization that did not require new gene expression. However, these initial morphologic changes were integrin dependent and they were associated with a reorganization of focal contacts and focal adhesions as well as an activation of the focal adhesion kinase. Therefore, GENK induces a mesenchymal mode of cell motility in a wide variety of tumor cell types that may be mediated, at least in part, by an activation of integrin-associated signaling.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Flavonas/farmacología , Aumento de la Célula/efectos de los fármacos , Línea Celular Tumoral , Polaridad Celular , Flavonas/química , Adhesiones Focales , Humanos , Cadenas alfa de Integrinas/química , Cadenas beta de Integrinas/química , Invasividad Neoplásica/patología , Osteosarcoma/química , Osteosarcoma/patología , Biosíntesis de Proteínas/efectos de los fármacos , Transcripción Genética , Wikstroemia/química
12.
J Biol Chem ; 287(21): 17530-17545, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22474287

RESUMEN

Mammalian target of rapamycin complex 1 (mTORC1) signaling is frequently dysregulated in cancer. Inhibition of mTORC1 is thus regarded as a promising strategy in the treatment of tumors with elevated mTORC1 activity. We have recently identified niclosamide (a Food and Drug Administration-approved antihelminthic drug) as an inhibitor of mTORC1 signaling. In the present study, we explored possible mechanisms by which niclosamide may inhibit mTORC1 signaling. We tested whether niclosamide interferes with signaling cascades upstream of mTORC1, the catalytic activity of mTOR, or mTORC1 assembly. We found that niclosamide does not impair PI3K/Akt signaling, nor does it inhibit mTORC1 kinase activity. We also found that niclosamide does not interfere with mTORC1 assembly. Previous studies in helminths suggest that niclosamide disrupts pH homeostasis of the parasite. This prompted us to investigate whether niclosamide affects the pH balance of cancer cells. Experiments in both breast cancer cells and cell-free systems demonstrated that niclosamide possesses protonophoric activity in cells and in vitro. In cells, niclosamide dissipated protons (down their concentration gradient) from lysosomes to the cytosol, effectively lowering cytoplasmic pH. Notably, analysis of five niclosamide analogs revealed that the structural features of niclosamide required for protonophoric activity are also essential for mTORC1 inhibition. Furthermore, lowering cytoplasmic pH by means other than niclosamide treatment (e.g. incubation with propionic acid or bicarbonate withdrawal) recapitulated the inhibitory effects of niclosamide on mTORC1 signaling, lending support to a possible role for cytoplasmic pH in the control of mTORC1. Our data illustrate a potential mechanism for chemical inhibition of mTORC1 signaling involving modulation of cytoplasmic pH.


Asunto(s)
Antinematodos/farmacología , Niclosamida/farmacología , Proteínas/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Concentración de Iones de Hidrógeno , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR
13.
Org Biomol Chem ; 11(9): 1476-81, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23334605

RESUMEN

The tricyclic peptides neopetrosiamides A and B, isolated from the marine sponge Neopetrosia sp., are potential antimetastatic agents that inhibit tumour cell invasion by both amoeboid and mesenchymal migration pathways. They differ in the stereochemistry of the methionine sulfoxide at position 24. Our previously reported syntheses using an orthogonal sulfur protection strategy established the critical connectivity of the three disulfide bonds. In this report, fifteen analogues of neopetrosiamide A and B, six which replace selected disulfide bonds and nine which replace the diastereomeric methionine sulfoxide, have been prepared using Fmoc solid-phase peptide chemistry. Disulfide replacement analogues were shown to lose activity, and only one of the methionine sulfoxide analogues retained full bioactivity in morphological studies.


Asunto(s)
Antineoplásicos/farmacología , Invasividad Neoplásica/prevención & control , Péptidos Cíclicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Invasividad Neoplásica/patología , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/química , Relación Estructura-Actividad
14.
Nanomedicine ; 9(5): 665-74, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23219877

RESUMEN

Gene silencing activity of lipid nanoparticle (LNP) formulations of siRNA requires LNP surface factors promoting cellular uptake. This study aimed to identify small molecules that enhance cellular uptake of LNP siRNA systems, then use them as LNP-associated ligands to improve gene silencing potency. Screening the Canadian Chemical Biology Network molecules for effects on LNP uptake into HeLa cells found that cardiac glycosides like ouabain and strophanthidin caused the highest uptake. Cardiac glycosides stimulate endocytosis on binding to plasma membrane Na(+)/K(+) ATPase found in all mammalian cells, offering the potential to stimulate LNP uptake into various cell types. A PEG-lipid containing strophanthidin at the end of PEG (STR-PEG-lipid) was synthesized and incorporated into LNP. Compared to non-liganded systems, STR-PEG-lipid enhanced LNP uptake in various cell types. Furthermore, this enhanced uptake improved marker gene silencing in vitro. Addition of STR-PEG-lipid to LNP siRNA may have general utility for enhancing gene silencing potency. FROM THE CLINICAL EDITOR: In this study, the authors identified small molecules that enhance cellular uptake of lipid nanoparticle siRNA systems, then used them as LNP-associated ligands to improve gene silencing potency.


Asunto(s)
Lípidos/administración & dosificación , Nanopartículas/administración & dosificación , ARN Interferente Pequeño/genética , Estrofantidina/administración & dosificación , Animales , Endocitosis/genética , Silenciador del Gen/efectos de los fármacos , Técnicas de Transferencia de Gen , Células HeLa , Humanos , Ligandos , Lípidos/química , Nanopartículas/química , ARN Interferente Pequeño/química , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Estrofantidina/química
15.
J Biol Chem ; 286(9): 7290-300, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21193398

RESUMEN

Autophagy enables cells to degrade and recycle cytoplasmic materials both as a housekeeping mechanism and in response to extracellular stress such as nutrient deprivation. Recent studies indicate that autophagy also functions as a protective mechanism in response to several cancer therapy agents, making it a prospective therapeutic target. Few pharmacological inhibitors suitable for testing the therapeutic potential of autophagy inhibition in vivo are known. An automated microscopy assay was used to screen >3,500 drugs and pharmacological agents and identified one drug, verteporfin, as an inhibitor of autophagosome accumulation. Verteporfin is a benzoporphyrin derivative used in photodynamic therapy, but it inhibits autophagy without light activation. Verteporfin did not inhibit LC3/Atg8 processing or membrane recruitment in response to autophagic stimuli, but it inhibited drug- and starvation-induced autophagic degradation and the sequestration of cytoplasmic materials into autophagosomes. Transient exposure to verteporfin in starvation conditions reduced cell viability whereas cells in nutrient-rich medium were unaffected by drug treatment. Analysis of structural analogs indicated that the activity of verteporfin requires the presence of a substituted cyclohexadiene at ring A of the porphyrin core but that it can tolerate a number of large substituents at rings C and D. The existence of an autophagy inhibitor among FDA-approved drugs should facilitate the investigation of the therapeutic potential of autophagy inhibition in vivo.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Fagosomas/efectos de los fármacos , Porfirinas/farmacología , Antineoplásicos/química , Autofagia/fisiología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Dextranos/farmacocinética , Diseño de Fármacos , Femenino , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Proteínas Fluorescentes Verdes/farmacocinética , Humanos , Microscopía Electrónica , Fagosomas/fisiología , Fagosomas/ultraestructura , Porfirinas/química , Verteporfina
16.
Invest New Drugs ; 30(3): 959-66, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21416228

RESUMEN

Many compounds used in the treatment of cancer possess tubulin-interacting properties that lead to mitotic arrest. Withaphysalins are potent cytotoxic compounds that are commonly found in plants belonging to the Solanaceae family, such as Acnistus arborescens; however, the cytotoxic mechanisms or molecular targets of these compounds remain unknown. Thus, the aim of this study was to evaluate the effects of whitaphysalins on cancer cell cycle progression and tubulin interaction. In this report, we show the antiproliferative activity of withaphysalin F and its effect in arresting cells in the G(2)/M phase of the cell cycle. These two effects are the result of the interference of withaphysalin F in the polymerization of microtubules. Withaphysalin F also induced DNA fragmentation, which can be related to an increase in mitochondrial membrane depolarization. These results suggest that interference of withaphysalin F in microtubule polymerization may induce cell cycle arrest in the G(2)/M phase and therefore contribute to growth inhibition of tumor cells in vitro. Taken together, these studies indicate that withaphysalin F could potentially be used as an anticancer drug.


Asunto(s)
Antineoplásicos/farmacología , Ergosterol/análogos & derivados , Secoesteroides/farmacología , Solanaceae , Tubulina (Proteína)/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ergosterol/farmacología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
17.
J Nat Prod ; 75(6): 1189-91, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22626446

RESUMEN

The new hexahydroazulenones hortonones A (1) to C (3) were isolated from the leaves of three representative species of the endemic Sri Lankan genus Hortonia that belongs to the family Monimiaceae. Hortonones A (1) and B (2) have the unprecedented rearranged hortonane sesquiterpenoid carbon skeleton, and hortonone C (3) has the unprecedented rearranged and degraded 13-norhortonane skeleton. Hortonone C (3) exhibited in vitro cytotoxicity against human breast cancer MCF-7 cells at 5 µg/mL.


Asunto(s)
Antineoplásicos Fitogénicos/aislamiento & purificación , Diterpenos/aislamiento & purificación , Monimiaceae/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama , Diterpenos/química , Diterpenos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Estructura Molecular , Hojas de la Planta/química , Sri Lanka
18.
iScience ; 25(3): 103891, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35243249

RESUMEN

Alport syndrome, a disease of kidney, ear, and eye, is caused by pathogenic variants in the COL4A3, COL4A4, or COL4A5 genes encoding collagen α3α4α5(IV) of basement membranes. Collagen IV chains that are truncated due to nonsense variants/premature termination codons (PTCs) cannot assemble into heterotrimers or incorporate into basement membranes. To investigate the feasibility of PTC readthrough therapy for Alport syndrome, we utilized two NanoLuc reporters in transfected cells: full-length for monitoring translation, and a split version for assessing readthrough product function. Full-length assays of 49 COL4A5 nonsense variants identified eleven as susceptible to PTC readthrough using various readthrough drugs. In split-NanoLuc assays, the predicted missense α5(IV) readthrough products of five nonsense mutations could heterotrimerize with α3(IV) and α4(IV). Readthrough was also observed in kidney cells from an engineered Col4a5 PTC mouse model. These results suggest that readthrough therapy is a feasible approach for a fraction of patients with Alport syndrome.

19.
Cell Chem Biol ; 29(5): 870-882.e11, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34520745

RESUMEN

The pathogen Mycobacterium tuberculosis (Mtb) evades the innate immune system by interfering with autophagy and phagosomal maturation in macrophages, and, as a result, small molecule stimulation of autophagy represents a host-directed therapeutics (HDTs) approach for treatment of tuberculosis (TB). Here we show the marine natural product clionamines activate autophagy and inhibit Mtb survival in macrophages. A yeast chemical-genetics approach identified Pik1 as target protein of the clionamines. Biotinylated clionamine B pulled down Pik1 from yeast cell lysates and a clionamine analog inhibited phosphatidyl 4-phosphate (PI4P) production in yeast Golgi membranes. Chemical-genetic profiles of clionamines and cationic amphiphilic drugs (CADs) are closely related, linking the clionamine mode of action to co-localization with PI4P in a vesicular compartment. Small interfering RNA (siRNA) knockdown of PI4KB, a human homolog of Pik1, inhibited the survival of Mtb in macrophages, identifying PI4KB as an unexploited molecular target for efforts to develop HDT drugs for treatment of TB.


Asunto(s)
Mycobacterium tuberculosis , Proteínas de Saccharomyces cerevisiae , Tuberculosis , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Autofagia , Humanos , Macrófagos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Tuberculosis/tratamiento farmacológico
20.
Antimicrob Agents Chemother ; 55(8): 3861-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21576426

RESUMEN

Therapeutic options for tuberculosis (TB) are limited and notoriously ineffective despite the wide variety of potent antibiotics available for treating other bacterial infections. We investigated an approach that enables an expansion of TB therapeutic strategies by using synergistic combinations of drugs. To achieve this, we devised a high-throughput synergy screen (HTSS) of chemical libraries having known pharmaceutical properties, including thousands that are clinically approved. Spectinomycin was used to test the concept that clinically available antibiotics with limited efficacy against Mycobacterium tuberculosis might be used for TB treatment when coadministered with a synergistic partner compound used as a sensitizer. Screens using Mycobacterium smegmatis revealed many compounds in our libraries that acted synergistically with spectinomycin. Among them, several families of antimicrobial compounds, including macrolides and azoles, were also synergistic against M. tuberculosis in vitro and in a macrophage model of M. tuberculosis infection. Strikingly, each sensitizer identified for synergy with spectinomycin uniquely enhanced the activities of other clinically used antibiotics, revealing a remarkable number of unexplored synergistic drug combinations. HTSS also revealed a novel activity for bromperidol, a butyrophenone used as an antipsychotic drug, which was discovered to be bactericidal and greatly enhanced the activities of several antibiotics and drug combinations against M. tuberculosis. Our results suggest that many compounds in the currently available pharmacopoeia could be readily mobilized for TB treatment, including disease caused by multi- and extensively drug-resistant strains for which there are no effective therapies.


Asunto(s)
Antituberculosos/farmacología , Haloperidol/análogos & derivados , Mycobacterium tuberculosis/efectos de los fármacos , Espectinomicina/farmacología , Tuberculosis/tratamiento farmacológico , Sinergismo Farmacológico , Quimioterapia Combinada , Haloperidol/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Mycobacterium smegmatis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA