Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nucleic Acids Res ; 50(4): 2172-2189, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35150569

RESUMEN

MicroRNAs silence mRNAs by guiding the RISC complex. RISC assembly occurs following cleavage of pre-miRNAs by Dicer, assisted by TRBP or PACT, and the transfer of miRNAs to AGO proteins. The R2TP complex is an HSP90 co-chaperone involved in the assembly of ribonucleoprotein particles. Here, we show that the R2TP component RPAP3 binds TRBP but not PACT. The RPAP3-TPR1 domain interacts with the TRBP-dsRBD3, and the 1.5 Å resolution crystal structure of this complex identifies key residues involved in the interaction. Remarkably, binding of TRBP to RPAP3 or Dicer is mutually exclusive. Additionally, we found that AGO(1/2), TRBP and Dicer are all sensitive to HSP90 inhibition, and that TRBP sensitivity is increased in the absence of RPAP3. Finally, RPAP3 seems to impede miRNA activity, raising the possibility that the R2TP chaperone might sequester TRBP to regulate the miRNA pathway.


Asunto(s)
MicroARNs , Complejo Silenciador Inducido por ARN , Silenciador del Gen , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Coactivadores de Receptor Nuclear/química , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
2.
RNA ; 27(12): 1528-1544, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34493599

RESUMEN

RNA localization and local translation are important for numerous cellular functions. In mammals, a class of mRNAs localize to cytoplasmic protrusions in an APC-dependent manner, with roles during cell migration. Here, we investigated this localization mechanism. We found that the KIF1C motor interacts with APC-dependent mRNAs and is required for their localization. Live cell imaging revealed rapid, active transport of single mRNAs over long distances that requires both microtubules and KIF1C. Two-color imaging directly revealed single mRNAs transported by single KIF1C motors, with the 3'UTR being sufficient to trigger KIF1C-dependent RNA transport and localization. Moreover, KIF1C remained associated with peripheral, multimeric RNA clusters and was required for their formation. These results reveal a widespread RNA transport pathway in mammalian cells, in which the KIF1C motor has a dual role in transporting RNAs and clustering them within cytoplasmic protrusions. Interestingly, KIF1C also transports its own mRNA, suggesting a possible feedback loop acting at the level of mRNA transport.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Extensiones de la Superficie Celular/metabolismo , Citoplasma/metabolismo , Cinesinas/metabolismo , Transporte de ARN , ARN Mensajero/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Células HeLa , Humanos , Cinesinas/genética , ARN Mensajero/genética
3.
Nucleic Acids Res ; 49(2): 1094-1113, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33367824

RESUMEN

The PAQosome is a large complex composed of the HSP90/R2TP chaperone and a prefoldin-like module. It promotes the biogenesis of cellular machineries but it is unclear how it discriminates closely related client proteins. Among the main PAQosome clients are C/D snoRNPs and in particular their core protein NOP58. Using NOP58 mutants and proteomic experiments, we identify different assembly intermediates and show that C12ORF45, which we rename NOPCHAP1, acts as a bridge between NOP58 and PAQosome. NOPCHAP1 makes direct physical interactions with the CC-NOP domain of NOP58 and domain II of RUVBL1/2 AAA+ ATPases. Interestingly, NOPCHAP1 interaction with RUVBL1/2 is disrupted upon ATP binding. Moreover, while it robustly binds both yeast and human NOP58, it makes little interactions with NOP56 and PRPF31, two other closely related CC-NOP proteins. Expression of NOP58, but not NOP56 or PRPF31, is decreased in NOPCHAP1 KO cells. We propose that NOPCHAP1 is a client-loading PAQosome cofactor that selects NOP58 to promote box C/D snoRNP assembly.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/biosíntesis , Adenosina Trifosfato/metabolismo , Proteínas del Ojo/metabolismo , Técnicas de Inactivación de Genes , Genes Reporteros , Proteínas HSP90 de Choque Térmico/metabolismo , Células HeLa , Humanos , Complejos Multiproteicos , Dominios Proteicos , Mapeo de Interacción de Proteínas , Proteómica/métodos , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Cell ; 48(1): 145-52, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22921936

RESUMEN

In S. cerevisiae cells debilitated in mRNA nuclear export, transcripts are retained in nuclear foci ("dots"). The ultimate fate of dot-mRNA has remained elusive. Here, we use single molecule counting microscopy and (35)S-methionine pulse-labeling assays to quantify cytoplasmic HSP104 RNA levels and estimate HSP104 RNA translation status. HSP104 transcripts, retained in dots as a consequence of the mex67-5 mutation, are slowly released over time for cytoplasmic translation. Thus, dot-mRNA retains function. However, forcing its nuclear export, by overexpressing the Sub2p mRNA export factor, does not elevate Hsp104p protein levels but is instead paralleled by growth deficiency. Nuclear export and growth phenotypes are both counteracted by coexpressing the nuclear RNA quality control factor Rrp6p. Thus, prematurely released dot-mRNA is translationally inactive and possibly toxic. Accordingly, nuclear retention of mRNA may serve a precautionary role during stressful situations such as, e.g., decreased mRNA maturation competence.


Asunto(s)
ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Genes Fúngicos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mutación , ARN de Hongos/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Mol Cell ; 39(6): 912-924, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20864038

RESUMEN

RNA polymerases are key multisubunit cellular enzymes. Microscopy studies indicated that RNA polymerase I assembles near its promoter. However, the mechanism by which RNA polymerase II is assembled from its 12 subunits remains unclear. We show here that RNA polymerase II subunits Rpb1 and Rpb3 accumulate in the cytoplasm when assembly is prevented and that nuclear import of Rpb1 requires the presence of all subunits. Using MS-based quantitative proteomics, we characterized assembly intermediates. These included a cytoplasmic complex containing subunits Rpb1 and Rpb8 associated with the HSP90 cochaperone hSpagh (RPAP3) and the R2TP/Prefoldin-like complex. Remarkably, HSP90 activity stabilized incompletely assembled Rpb1 in the cytoplasm. Our data indicate that RNA polymerase II is built in the cytoplasm and reveal quality-control mechanisms that link HSP90 to the nuclear import of fully assembled enzymes. hSpagh also bound the free RPA194 subunit of RNA polymerase I, suggesting a general role in assembling RNA polymerases.


Asunto(s)
Proteínas Portadoras/metabolismo , Citoplasma/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/metabolismo , Multimerización de Proteína/fisiología , ARN Polimerasa II/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/fisiología , Alfa-Amanitina/farmacología , Proteínas Reguladoras de la Apoptosis , Línea Celular Tumoral , Genes Reporteros/genética , VIH-1/genética , Humanos , Complejos Multiproteicos/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Unión Proteica/fisiología , Mapeo de Interacción de Proteínas/métodos , Multimerización de Proteína/efectos de los fármacos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteómica , ARN Polimerasa I/metabolismo , ARN Polimerasa II/genética , ARN Interferente Pequeño
6.
Nucleic Acids Res ; 42(3): 2015-36, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24234454

RESUMEN

The yeast Snu13p protein and its 15.5K human homolog both bind U4 snRNA and box C/D snoRNAs. They also bind the Rsa1p/NUFIP assembly factor, proposed to scaffold immature snoRNPs and to recruit the Hsp90-R2TP chaperone complex. However, the nature of the Snu13p/15.5K-Rsa1p/NUFIP interaction and its exact role in snoRNP assembly remained to be elucidated. By using biophysical, molecular and imaging approaches, here, we identify residues needed for Snu13p/15.5K-Rsa1p/NUFIP interaction. By NMR structure determination and docking approaches, we built a 3D model of the Snup13p-Rsa1p interface, suggesting that residues R249, R246 and K250 in Rsa1p and E72 and D73 in Snu13p form a network of electrostatic interactions shielded from the solvent by hydrophobic residues from both proteins and that residue W253 of Rsa1p is inserted in a hydrophobic cavity of Snu13p. Individual mutations of residues in yeast demonstrate the functional importance of the predicted interactions for both cell growth and snoRNP formation. Using archaeal box C/D sRNP 3D structures as templates, the association of Snu13p with Rsa1p is predicted to be exclusive of interactions in active snoRNPs. Rsa1p and NUFIP may thus prevent premature activity of pre-snoRNPs, and their removal may be a key step for active snoRNP production.


Asunto(s)
Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Proteínas Ribosómicas/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Estabilidad del ARN , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Electricidad Estática
7.
RNA ; 16(12): 2570-80, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20974745

RESUMEN

We describe methods for obtaining a quantitative description of RNA processing at high resolution in budding yeast. As a model gene expression system, we constructed tetON (for induction studies) and tetOFF (for repression, derepression, and RNA degradation studies) yeast strains with a series of reporter genes integrated in the genome under the control of a tetO7 promoter. Reverse transcription and quantitative real-time-PCR (RT-qPCR) methods were adapted to allow the determination of mRNA abundance as the average number of copies per cell in a population. Fluorescence in situ hybridization (FISH) measurements of transcript numbers in individual cells validated the RT-qPCR approach for the average copy-number determination despite the broad distribution of transcript levels within a population of cells. In addition, RT-qPCR was used to distinguish the products of the different steps in splicing of the reporter transcripts, and methods were developed to map and quantify 3'-end cleavage and polyadenylation. This system permits pre-mRNA production, splicing, 3'-end maturation and degradation to be quantitatively monitored with unprecedented kinetic detail, suitable for mathematical modeling. Using this approach, we demonstrate that reporter transcripts are spliced prior to their 3'-end cleavage and polyadenylation, that is, cotranscriptionally.


Asunto(s)
Genes Reporteros , Procesamiento de Término de ARN 3'/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Saccharomyces cerevisiae , Algoritmos , Estudios de Evaluación como Asunto , Procesamiento de Imagen Asistido por Computador , Hibridación Fluorescente in Situ/métodos , Cinética , Modelos Biológicos , Modelos Genéticos , Procesamiento de Término de ARN 3'/fisiología , Precursores del ARN/análisis , Precursores del ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Nat Commun ; 12(1): 4503, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301927

RESUMEN

Promoter-proximal pausing of RNA polymerase II is a key process regulating gene expression. In latent HIV-1 cells, it prevents viral transcription and is essential for latency maintenance, while in acutely infected cells the viral factor Tat releases paused polymerase to induce viral expression. Pausing is fundamental for HIV-1, but how it contributes to bursting and stochastic viral reactivation is unclear. Here, we performed single molecule imaging of HIV-1 transcription. We developed a quantitative analysis method that manages multiple time scales from seconds to days and that rapidly fits many models of promoter dynamics. We found that RNA polymerases enter a long-lived pause at latent HIV-1 promoters (>20 minutes), thereby effectively limiting viral transcription. Surprisingly and in contrast to current models, pausing appears stochastic and not obligatory, with only a small fraction of the polymerases undergoing long-lived pausing in absence of Tat. One consequence of stochastic pausing is that HIV-1 transcription occurs in bursts in latent cells, thereby facilitating latency exit and providing a rationale for the stochasticity of viral rebounds.


Asunto(s)
Regulación Viral de la Expresión Génica , Infecciones por VIH/genética , VIH-1/genética , Regiones Promotoras Genéticas/genética , Latencia del Virus/genética , Algoritmos , ARN Polimerasas Dirigidas por ADN/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Células HeLa , Humanos , Modelos Genéticos , Procesos Estocásticos , Factores de Tiempo , Activación Viral/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
9.
Nat Commun ; 12(1): 1352, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649340

RESUMEN

Local translation allows for a spatial control of gene expression. Here, we use high-throughput smFISH to screen centrosomal protein-coding genes, and we describe 8 human mRNAs accumulating at centrosomes. These mRNAs localize at different stages during cell cycle with a remarkable choreography, indicating a finely regulated translational program at centrosomes. Interestingly, drug treatments and reporter analyses reveal a common translation-dependent localization mechanism requiring the nascent protein. Using ASPM and NUMA1 as models, single mRNA and polysome imaging reveals active movements of endogenous polysomes towards the centrosome at the onset of mitosis, when these mRNAs start localizing. ASPM polysomes associate with microtubules and localize by either motor-driven transport or microtubule pulling. Remarkably, the Drosophila orthologs of the human centrosomal mRNAs also localize to centrosomes and also require translation. These data identify a conserved family of centrosomal mRNAs that localize by active polysome transport mediated by nascent proteins.


Asunto(s)
Centrosoma/metabolismo , Polirribosomas/metabolismo , Transporte de ARN , Animales , Proteínas de Ciclo Celular/metabolismo , Centrosoma/efectos de los fármacos , Cicloheximida/farmacología , Drosophila/genética , Células HeLa , Humanos , Mitosis/efectos de los fármacos , Sistemas de Lectura Abierta/genética , Polirribosomas/efectos de los fármacos , Puromicina/farmacología , Transporte de ARN/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo
10.
Methods Mol Biol ; 2166: 121-144, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32710406

RESUMEN

Live imaging of single RNA from birth to death brought important advances in our understanding of the spatiotemporal regulation of gene expression. These studies have provided a comprehensive understanding of RNA metabolism by describing the process step by step. Most of these studies used for live imaging a genetically encoded RNA-tagging system fused to fluorescent proteins. One of the best characterized RNA-tagging systems is derived from the bacteriophage MS2 and it allows single RNA imaging in real-time and live cells. This system has been successfully used to track the different steps of mRNA processing in many living organisms. The recent development of optimized MS2 and MCP variants now allows the labeling of endogenous RNAs and their imaging without modifying their behavior. In this chapter, we discuss the improvements in detecting single mRNAs with different variants of MCP and fluorescent proteins that we tested in yeast and mammalian cells. Moreover, we describe protocols using MS2-MCP systems improved for real-time imaging of single mRNAs and transcription dynamics in S. cerevisiae and mammalian cells, respectively.


Asunto(s)
Proteínas de la Cápside/genética , Técnicas de Cultivo de Célula/métodos , Hibridación Fluorescente in Situ/métodos , Levivirus/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Imagen Individual de Molécula/métodos , Análisis de la Célula Individual/métodos , Animales , Línea Celular , Expresión Génica , Humanos , Procesamiento de Imagen Asistido por Computador , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Relación Señal-Ruido
11.
Dev Cell ; 54(6): 773-791.e5, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32783880

RESUMEN

Local translation allows spatial control of gene expression. Here, we performed a dual protein-mRNA localization screen, using smFISH on 523 human cell lines expressing GFP-tagged genes. 32 mRNAs displayed specific cytoplasmic localizations with local translation at unexpected locations, including cytoplasmic protrusions, cell edges, endosomes, Golgi, the nuclear envelope, and centrosomes, the latter being cell-cycle-dependent. Automated classification of mRNA localization patterns revealed a high degree of intercellular heterogeneity. Surprisingly, mRNA localization frequently required ongoing translation, indicating widespread co-translational RNA targeting. Interestingly, while P-body accumulation was frequent (15 mRNAs), four mRNAs accumulated in foci that were distinct structures. These foci lacked the mature protein, but nascent polypeptide imaging showed that they were specialized translation factories. For ß-catenin, foci formation was regulated by Wnt, relied on APC-dependent polysome aggregation, and led to nascent protein degradation. Thus, translation factories uniquely regulate nascent protein metabolism and create a fine granular compartmentalization of translation.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , ARN/metabolismo , Línea Celular , Centrosoma/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Polirribosomas/genética , Polirribosomas/metabolismo , Biosíntesis de Proteínas/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , ARN Mensajero/genética
12.
Nat Commun ; 9(1): 2093, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844425

RESUMEN

R2TP is an HSP90 co-chaperone that assembles important macro-molecular machineries. It is composed of an RPAP3-PIH1D1 heterodimer, which binds the two essential AAA+ATPases RUVBL1/RUVBL2. Here, we resolve the structure of the conserved C-terminal domain of RPAP3, and we show that it directly binds RUVBL1/RUVBL2 hexamers. The human genome encodes two other proteins bearing RPAP3-C-terminal-like domains and three containing PIH-like domains. Systematic interaction analyses show that one RPAP3-like protein, SPAG1, binds PIH1D2 and RUVBL1/2 to form an R2TP-like complex termed R2SP. This co-chaperone is enriched in testis and among 68 of the potential clients identified, some are expressed in testis and others are ubiquitous. One substrate is liprin-α2, which organizes large signaling complexes. Remarkably, R2SP is required for liprin-α2 expression and for the assembly of liprin-α2 complexes, indicating that R2SP functions in quaternary protein folding. Effects are stronger at 32 °C, suggesting that R2SP could help compensating the lower temperate of testis.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Testículo/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos de Superficie/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Portadoras/genética , Línea Celular , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Transducción de Señal
13.
Cell Rep ; 18(11): 2635-2650, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28297668

RESUMEN

The nuclear cap-binding complex (CBC) stimulates processing reactions of capped RNAs, including their splicing, 3'-end formation, degradation, and transport. CBC effects are particular for individual RNA families, but how such selectivity is achieved remains elusive. Here, we analyze three main CBC partners known to impact different RNA species. ARS2 stimulates 3'-end formation/transcription termination of several transcript types, ZC3H18 stimulates degradation of a diverse set of RNAs, and PHAX functions in pre-small nuclear RNA/small nucleolar RNA (pre-snRNA/snoRNA) transport. Surprisingly, these proteins all bind capped RNAs without strong preferences for given transcripts, and their steady-state binding correlates poorly with their function. Despite this, PHAX and ZC3H18 compete for CBC binding and we demonstrate that this competitive binding is functionally relevant. We further show that CBC-containing complexes are short lived in vivo, and we therefore suggest that RNA fate involves the transient formation of mutually exclusive CBC complexes, which may only be consequential at particular checkpoints during RNA biogenesis.


Asunto(s)
Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , ARN/metabolismo , Células HEK293 , Células HeLa , Humanos , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
Nat Commun ; 7: 12248, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27461529

RESUMEN

Live-cell imaging has revealed unexpected features of gene expression. Here using improved single-molecule RNA microscopy, we show that synthesis of HIV-1 RNA is achieved by groups of closely spaced polymerases, termed convoys, as opposed to single isolated enzymes. Convoys arise by a Mediator-dependent reinitiation mechanism, which generates a transient but rapid succession of polymerases initiating and escaping the promoter. During elongation, polymerases are spaced by few hundred nucleotides, and physical modelling suggests that DNA torsional stress may maintain polymerase spacing. We additionally observe that the HIV-1 promoter displays stochastic fluctuations on two time scales, which we refer to as multi-scale bursting. Each time scale is regulated independently: Mediator controls minute-scale fluctuation (convoys), while TBP-TATA-box interaction controls sub-hour fluctuations (long permissive/non-permissive periods). A cellular promoter also produces polymerase convoys and displays multi-scale bursting. We propose that slow, TBP-dependent fluctuations are important for phenotypic variability of single cells.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Imagen Individual de Molécula/métodos , Transcripción Genética , Secuencia de Bases , Supervivencia Celular , Productos del Gen tat , VIH-1/genética , Células HeLa , Humanos , Cinética , Modelos Biológicos , Regiones Promotoras Genéticas/genética , ARN/metabolismo , TATA Box/genética , Proteína de Unión a TATA-Box/metabolismo
15.
Nat Struct Mol Biol ; 20(12): 1358-66, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24270878

RESUMEN

The nuclear cap-binding complex (CBC) stimulates multiple steps in several RNA maturation pathways, but how it functions in humans is incompletely understood. For small, capped RNAs such as pre-snRNAs, the CBC recruits PHAX. Here, we identify the CBCAP complex, composed of CBC, ARS2 and PHAX, and show that both CBCAP and CBC-ARS2 complexes can be reconstituted from recombinant proteins. ARS2 stimulates PHAX binding to the CBC and snRNA 3'-end processing, thereby coupling maturation with export. In vivo, CBC and ARS2 bind similar capped noncoding and coding RNAs and stimulate their 3'-end processing. The strongest effects are for cap-proximal polyadenylation sites, and this favors premature transcription termination. ARS2 functions partly through the mRNA 3'-end cleavage factor CLP1, which binds RNA Polymerase II through PCF11. ARS2 is thus a major CBC effector that stimulates functional and cryptic 3'-end processing sites.


Asunto(s)
Modelos Genéticos , Complejo Proteico Nuclear de Unión a la Caperuza/fisiología , Proteínas Nucleares/fisiología , Proteínas de Transporte Nucleocitoplasmático/fisiología , Fosfoproteínas/fisiología , Procesamiento de Término de ARN 3' , Células HeLa , Humanos , Complejo Proteico Nuclear de Unión a la Caperuza/química , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Poli A/química , Poli A/metabolismo
16.
J Cell Biol ; 193(5): 819-29, 2011 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-21624952

RESUMEN

Splicing is a key process that expands the coding capacity of genomes. Its kinetics remain poorly characterized, and the distribution of splicing time caused by the stochasticity of single splicing events is expected to affect regulation efficiency. We conducted a small-scale survey on 40 introns in human cells and observed that most were spliced cotranscriptionally. Consequently, we constructed a reporter system that splices cotranscriptionally and can be monitored in live cells and in real time through the use of MS2-GFP. All small nuclear ribonucleoproteins (snRNPs) are loaded on nascent pre-mRNAs, and spliceostatin A inhibits splicing but not snRNP recruitment. Intron removal occurs in minutes and is best described by a model where several successive steps are rate limiting. Each pre-mRNA molecule is predicted to require a similar time to splice, reducing kinetic noise and improving the regulation of alternative splicing. This model is relevant to other kinetically controlled processes acting on few molecules.


Asunto(s)
Empalme Alternativo/genética , Modelos Biológicos , Imagen Molecular/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Línea Celular Tumoral , Humanos , Cinética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo
17.
PLoS One ; 5(1): e8845, 2010 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-20126621

RESUMEN

BACKGROUND: The complexity of messenger RNA processing is now being uncovered by experimental techniques that are capable of detecting individual copies of mRNA in cells, and by quantitative real-time observations that reveal the kinetics. This processing is commonly modelled by permitting mRNA to be transcribed only when the promoter is in the on state. In this simple on/off model, the many processes involved in active transcription are represented by a single reaction. These processes include elongation, which has a minimum time for completion and processing that is not captured in the model. METHODOLOGY: In this paper, we explore the impact on the mRNA distribution of representing the elongation process in more detail. Consideration of the mechanisms of elongation leads to two alternative models of the coupling between the elongating polymerase and the state of the promoter: Processivity allows polymerases to complete elongation irrespective of the promoter state, whereas coupling requires the promoter to be active to produce a full-length transcript. We demonstrate that these alternatives have a significant impact on the predicted distributions. Models are simulated by the Gillespie algorithm, and the third and fourth moments of the resulting distribution are computed in order to characterise the length of the tail, and sharpness of the peak. By this methodology, we show that the moments provide a concise summary of the distribution, showing statistically-significant differences across much of the feasible parameter range. CONCLUSIONS: We conclude that processivity is not fully consistent with the on/off model unless the probability of successfully completing elongation is low--as has been observed. The results also suggest that some form of coupling between the promoter and a rate-limiting step in transcription may explain the cell's inability to maintain high mRNA levels at low noise--a prediction of the on/off model that has no supporting evidence.


Asunto(s)
ARN Mensajero/genética , Transcripción Genética , Regiones Promotoras Genéticas , Procesos Estocásticos
18.
J Cell Biol ; 180(3): 579-95, 2008 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-18268104

RESUMEN

RNA-binding proteins of the L7Ae family are at the heart of many essential ribonucleoproteins (RNPs), including box C/D and H/ACA small nucleolar RNPs, U4 small nuclear RNP, telomerase, and messenger RNPs coding for selenoproteins. In this study, we show that Nufip and its yeast homologue Rsa1 are key components of the machinery that assembles these RNPs. We observed that Rsa1 and Nufip bind several L7Ae proteins and tether them to other core proteins in the immature particles. Surprisingly, Rsa1 and Nufip also link assembling RNPs with the AAA + adenosine triphosphatases hRvb1 and hRvb2 and with the Hsp90 chaperone through two conserved adaptors, Tah1/hSpagh and Pih1. Inhibition of Hsp90 in human cells prevents the accumulation of U3, U4, and telomerase RNAs and decreases the levels of newly synthesized hNop58, hNHP2, 15.5K, and SBP2. Thus, Hsp90 may control the folding of these proteins during the formation of new RNPs. This suggests that Hsp90 functions as a master regulator of cell proliferation by allowing simultaneous control of cell signaling and cell growth.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo L/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Secuencia Conservada/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Proteínas HSP90 de Choque Térmico/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo L/genética , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica/fisiología , Pliegue de Proteína , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA