Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Molecules ; 24(17)2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31461900

RESUMEN

The olive oil industry produces large volumes of wastes, which are also potential sources of bioactive compounds by developing healthy and/or functional foods. Extraction of phenolic compounds from the residues of the olive oil is mainly carried out with solvents. However, there is currently a growing public awareness about the use of organic solvents in food processing, which has pointed out the need for the application of clean technologies such as pressurized liquid extraction (PLE). Therefore, the aim of this research was to optimize the phenolic compound extraction from olive pomace by PLE, establishing the qualitative and quantitative phenolic profile by HPLC-ESI-TOF/MS. The extraction design to recover phenolics from olive pomace demonstrates a great compositional variability of PLE extracts obtained under different experimental conditions. Indeed, quantitative results have pointed out the selectivity of PLE extraction when this technique is applied to the treatment of olive pomace. PLE-optimized conditions showed higher total phenolic compound content than conventional extraction (1659 mg/kg d.w. and 281.7 mg/kg d.w., respectively). Among these phenolics, the quantity of secoiridoids and flavonoids in the optimized PLE extract was three and four times higher than in conventional extracts. Furthermore, optimal PLE conditions allowed to obtain an enriched hydroxytyrosol extract which was not detected in the conventional one.


Asunto(s)
Aceite de Oliva/análisis , Fenoles/análisis , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/química , Extracción Líquido-Líquido/métodos , Solventes/química
2.
Molecules ; 23(5)2018 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-29783783

RESUMEN

The microencapsulation of maqui juice by spray-drying and freeze-drying was studied as a strategy to protect anthocyanins in new food formulations in order to improve the anthocyanin retention before consumption and the bioaccessibility. It is well known that the encapsulation method affects both the shape and size of powders, being assumed that undefined forms of freeze-drying powders might affect their stability due to the high permeability to oxygen. The objective of this study was to compare the microencapsulation of maqui juice by spray-drying and freeze-drying, evaluating the stability of specific anthocyanins in yogurt and after in vitro digestion. Results indicated that most relevant differences between spray-drying and freeze-drying powders were the morphology and particle size that affect their solubility (70.4⁻59.5%) when they were reconstituted in water. Nevertheless these differences did not affect the stability of anthocyanins as other research have proposed. Both encapsulation methods generated powders with a high stability of 3-O-monoglycosylated anthocyanins in yogurt (half-life values of 75⁻69 days for delphinidin-3-sambubioside). Furthermore, no significant differences in the bioaccessibility of anthocyanins between maqui juice powders (44.1⁻43.8%) were found. In conclusion, the microencapsulation of maqui juice by freeze-drying is as effective as spray-drying to produce new value-added food formulations with stable anthocyanins.


Asunto(s)
Composición de Medicamentos/métodos , Elaeocarpaceae/química , Extractos Vegetales/química , Antocianinas/química , Antocianinas/farmacocinética , Cápsulas , Estabilidad de Medicamentos , Liofilización , Tamaño de la Partícula , Polvos , Yogur/análisis
3.
Molecules ; 20(4): 5875-88, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25854753

RESUMEN

During the last decade, many berry-type fruits have been recognised as good sources of anthocyanins. Nevertheless, the use of anthocyanins in the development of food colourants and healthy and/or functional ingredients has been limited because of their low stability under given environmental conditions and interaction with other compounds in the food matrix. This review compiles information about the encapsulation of anthocyanins from twelve different berry-type fruit species as a technology for improving the stability and/or bioavailability of anthocyanins. Encapsulation by spray drying has been the primary method used to encapsulate anthocyanins, and some studies attempt to keep anthocyanin microparticles stable during storage. Nevertheless, more studies are needed to determine the stability of anthocyanin microparticles in food matrices over the product shelf life in the development of food colourants. Studies about encapsulated anthocyanins in simulated gastrointestinal models have primarily been conducted on the release of anthocyanins from microparticles to evaluate their bioavailability. However, adding anthocyanin microparticles to a food vehicle must guarantee the health properties attributed to the specific anthocyanins present in berry-type fruits.


Asunto(s)
Antocianinas/análisis , Conservación de Alimentos/métodos , Frutas/química , Antocianinas/farmacocinética , Disponibilidad Biológica , Análisis de los Alimentos/métodos , Humanos
4.
J Sci Food Agric ; 94(13): 2639-48, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24497378

RESUMEN

BACKGROUND: Maqui (Aristotelia chilensis) is a Chilean species which produces small berries that are collected from the wild. Anthocyanins, because of their health benefits, are the major focus of interest in maqui fruit. For this study, we examined anthocyanin and phenolic content of maqui fruits from individuals that belonged to four geographical areas in Chile, and used DNA marker analysis to examine the genetic variability of maqui populations that had distinctly different fruit anthocyanin content. RESULTS: Twelve primers generated a total of 145 polymorphic inter simple sequence repeat-polymerase chain reaction (ISSR-PCR) bands. ISSR-PCR showed different banding patterns for the individuals evaluated, confirming that maqui populations belonged to different genotypes. Maqui fruit from four different geographical regions during two consecutive growing seasons showed high total anthocyanin (6.6-15.0 g cy-3-glu kg⁻¹ fresh weight (FW)) and phenolic (10.7-20.5 g GAE kg⁻¹ FW) contents and different anthocyanin profiles. CONCLUSION: Three maqui genotypes exhibited significantly higher anthocyanin content than the others, as measured by pH differential method and high-performance liquid chromatography-mass spectrometry. Significant genetic diversity was noted within each ecological population. ISSR-PCR analysis provided a fingerprinting approach applicable for differentiation of maqui genotypes.


Asunto(s)
Antocianinas/análisis , Antioxidantes/análisis , Elaeocarpaceae/química , Frutas/química , Altitud , Antocianinas/metabolismo , Antioxidantes/metabolismo , Chile , Cromatografía Líquida de Alta Presión , Clima , Elaeocarpaceae/genética , Elaeocarpaceae/crecimiento & desarrollo , Elaeocarpaceae/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Marcadores Genéticos , Variación Genética , Límite de Detección , Fenoles/análisis , Fenoles/metabolismo , Filogenia , Análisis Espacio-Temporal , Especificidad de la Especie , Espectrometría de Masa por Ionización de Electrospray , Vida Silvestre
5.
Foods ; 13(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38998579

RESUMEN

The food industry is challenged to develop nutritious and palatable foods that satisfy older people's needs. So, this work aimed to study the incorporation of nanoemulsions enriched with vitamin D3 and omega-3 fatty acids into two desserts (yogurt and fruit puree), characterizing their nutritional profile, viscosity, and color properties and evaluating their in vitro bioaccessibility and sensory response. The results showed that adding nanoemulsion modified the nutrition profile of desserts due to increasing lipids and calories. The desserts' physical properties were also affected, with a decrease in viscosity and a lightening of color. Regarding digestion, the enriched desserts presented a low release of free fatty acids (14.8 and 11.4%, respectively). However, fruit puree showed the highest vitamin D3 and omega-3 fatty acid in vitro bioaccessibility (48.9 and 70.9%, respectively). In addition, older consumers found this dessert more acceptable than yogurt due to the adequate intensity of its sensory attributes (aroma, flavor, sweetness, and consistency). Therefore, the fruit puree can be enriched with nanoemulsions loaded with vitamin D3 and omega-3 fatty acids to improve the bioaccessibility of lipid bioactive compounds and sensory performance, offering a health-enhancing option for older consumers.

6.
Foods ; 13(3)2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338509

RESUMEN

Beeswax oleogels (OGs), with a mechanical strength similar to pork backfat, were formulated with avocado (A), sunflower (S), and linseed (L) oils, applying a central composite design plus star point, and were evaluated as oral delivery vehicles of curcuminoids (OGACur, OGSCur, OGLCur). The incorporation of curcumin into the OG matrix significantly delayed both the formation of peroxides and conjugated trienes (K268 values), and the degradation rate of curcumin decreased with the increase of the oil polyunsaturated fatty acids (PUFA) content. The oil structuring did not affect the bioaccessibility of curcuminoids (>55% in all the OGs, regardless of the oil type), but it did reduce the release of fatty acids (~10%) during in vitro gastrointestinal digestion. The intestinal absorption, evaluated in Caco-2 cell monolayers, was higher for the micelle-solubilized curcumin from the digested OG than from unstructured oils, and it showed high anti-inflammatory potential by inhibiting the tumor necrosis factor-α (TNF-α) production compared to the positive control, both before and after the stimulation of ThP-1 cells with LPS. Regardless of the oil type, these beeswax-based OGs with gel-like behavior designed as fat replacers may be promising vehicles for the oral delivery of curcuminoids.

7.
Food Chem ; 434: 137325, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37696152

RESUMEN

Encapsulation of quercetin (Q) with inulin (In) by spray-drying was performed applying a Box-Behnken design where the effect of the inlet air temperature, percentage of inulin crystallite dispersion and Q content were studied on the crystallinity index (CI). Three microparticle systems with CI between 2 % and 20 % (Q-In-2 %, Q-In-12 % and Q-In-20 %) were selected to study the CI effect on Q release during an in vitro digestion. The higher the CI of microparticles, the higher the encapsulation efficiency (76.4 %, Q-In-20 %). Surface quercetin was steadily released during the oral, gastric, and intestinal phases of the digestion. The CI of the microparticles did not influence the Q bioaccessibility values (23.1-29.7 %). The highest Q delivery occurred during the simulated colonic phase (44.4-66.4 %) due to the action of the inulinase. The controlled crystallization in spray-dried microparticles is a promising strategy for the designing of polyphenol-based microparticles with specific delivery properties.


Asunto(s)
Inulina , Quercetina , Inulina/química , Polifenoles , Temperatura , Digestión
8.
Food Chem ; 445: 138828, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401311

RESUMEN

The aim of this study was to evaluate the bioaccessibility of chlorogenic acid (CA) and curcumin co-encapsulated in Pickering double emulsions (DEs) with the inner interface stabilized by hydrophobically modified silica nanoparticles with myristic acid (SNPs-C14) or tocopherol succinate (SNPs-TS). Both SNPs-C14 and SNPs-TS showed contact angles > 90°. Pickering W1/O emulsions were formulated with 4 % of both types of SNPs. Pickering DEs showed higher creaming stability (5-7 %, day 42) and higher CA encapsulation efficiency (EE; 80 %) than control DE. The EE of curcumin was > 98 % in all the DEs. CA was steadily released from Pickering DEs during digestion, achieving bioaccessibility values of 58-60 %. Curcumin was released during the intestinal phase (∼80 % bioaccessibility in all DEs). Co-loaded DEs showed similar bioaccessibility for CA and curcumin than single-loaded. SNPs-C14 and SNPs-TS were suitable to stabilize the W1:O interface of DEs as co-delivery systems of bioactive compounds with health-promoting properties.


Asunto(s)
Curcumina , Nanopartículas , Emulsiones , Ácido Clorogénico , Tamaño de la Partícula
9.
Gels ; 10(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38786216

RESUMEN

Agavins are reserve carbohydrates found in agave plants; they present texture-modifying properties and prebiotic capacity by increasing the viability of the intestinal microbiota. Through its hydrolysis, agave syrup (AS) can be obtained and can be used as a sweetener in food matrices. The objective of this work was to evaluate the effect of the variation in the content of agavins and AS on the physical, structural, and viability properties of Saccharomyces boulardii encapsulates incorporated into gelatin gummies. An RSM was used to obtain an optimized formulation of gelatin gummies. The properties of the gel in the gummy were characterized by a texture profile analysis and Aw. The humidity and sugar content were determined. A sucrose gummy was used as a control for the variable ranges. Alginate microcapsules containing S. boulardii were added to the optimized gummy formulation to obtain a synbiotic gummy. The viability of S. boulardii and changes in the structure of the alginate gel of the microcapsules in the synbiotic gummy were evaluated for 24 days by image digital analysis (IDA). The agavins and agave syrup significantly affected the texture properties (<1 N) and the Aw (>0.85). The IDA showed a change in the gel network and an increase in viability by confocal microscopy from day 18. The number of pores in the gel increased, but their size decreased with an increase in the number of S. boulardii cells. Agavins and cells alter the structure of capsules in gummies without affecting their viability.

10.
Artículo en Inglés | MEDLINE | ID: mdl-36262482

RESUMEN

Direct Oral Anticoagulants have become a popular go to treatment option for patients with atrial fibrillation, deep vein thrombosis, or pulmonary embolism. This case report follows a 58 year old woman who developed atraumatic splenic rupture, a rare but recognized complication of direct oral anticoagulation use.

11.
Food Funct ; 13(3): 1370-1379, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35044402

RESUMEN

Among vegetable oils, chia oil has been gaining interest in recent years due to its high linolenic acid content (ALA, 18:3 ω3). The aim of this work was to study the influence of the particle size of encapsulated purified chia oil (PCO) on the encapsulation efficiency and PCO release during in vitro digestion. PCO micro- and nano-sized particles with sodium alginate (SA) as an encapsulating agent (ME-PCO-SA and NE-PCO-SA) were designed by micro and nano spray-drying, respectively, applying a central composite plus star point experimental design. NE-PCO-SA showed a smaller particle size and higher encapsulation efficiency of PCO than ME-PCO-SA (0.16 µm vs. 3.5 µm; 98.1% vs. 92.0%). Emulsions (NE-PCO and ME-PCO) and particles (NE-PCO-SA and ME-PCO-SA) were subjected to in vitro static gastrointestinal digestion. ME-PCO and NE-PCO showed sustained oil release throughout the three phases of digestion (oral, gastric and intestinal phases), whereas the PCO release from ME-PCO-SA and NE-PCO-SA occurred mainly in the intestinal phase, showing the suitability of sodium alginate as an intestine-site release polymer. Nano-sized particles showed a significantly higher PCO release after in vitro digestion (NE-PCO-SA, 78.4%) than micro-sized particles (ME-PCO-SA, 69.8%), and also higher bioaccessibility of individual free fatty acids, such as C18:3 ω-3 (NE-PCO-SA, 23.6%; ME-PCO-SA, 7.9%), due to their greater surface area. However, when ME-PCO-SA and NE-PCO-SA were incorporated into yogurt, the PCO release from both particle systems after the digestion of the matrix was similar (NE-PCO-SA, 58.8%; ME-PCO-SA-Y, 61.8%), possibly because the calcium ions contained in the yogurt induced partial ionic gelation of SA, impairing the PCO release. Sodium alginate spray-dried micro and nanoparticles showed great potential for vehiculation of omega-3 rich oils in the design of functional foods.


Asunto(s)
Digestión/efectos de los fármacos , Aceites de Plantas/farmacología , Salvia hispanica , Alginatos/química , Alimentos Funcionales , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Nanopartículas , Aceites de Plantas/química
12.
Food Chem ; 379: 132182, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35065497

RESUMEN

Water-in-soybean oil organogelled emulsions (OGEs) were formulated as fat replacers and evaluated as delivery systems of hydroxytyrosol (HT, hydrophilic compound), hydroxytyrosol octanoate (HTC18, hydrophobic compound) and hydroxytyrosol decanoate (HTC10, with intermediate hydrophobicity and the highest antioxidant activity measured by conjugated autoxidizable triene assay). OGEs formulated with 55% of water and a ternary blend of candelilla wax, fully hydrogenated palm oil and monoacylglycerols showed mechanical properties similar to lard and solid-like behavior. The increase in the water content, together with a higher concentration of structuring agents in the oil phase, led to an increase in oil retention capacity and texture parameters. A slight desesterification of HTC10 and HTC18 was found during in vitro gastrointestinal digestion. The three bioactive compounds loaded in OGEs showed high bioaccessibility values (∼84%) at the end of digestion, regardless their chain length and hydrophobicity. These OGEs designed as fat replacers showed a great potential for vehiculation of both hydrophilic and lipophilic compounds.


Asunto(s)
Alcohol Feniletílico , Aceite de Soja , Emulsiones , Ésteres , Alcohol Feniletílico/análogos & derivados
13.
Antioxidants (Basel) ; 12(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36670962

RESUMEN

Phenolic compounds have become interesting bioactive antioxidant compounds with implications for obesity, cancer and inflammatory gastrointestinal pathologies. As the influence of digestion and gut microbiota on antioxidant behavior is yet to be completely elucidated, and due to limitations associated to in vivo studies, dynamic in vitro gastrointestinal models have been promoted. A systematic review was conducted of different databases (PubMed, Web of Science and Scopus) following PRISMA guidelines to assess different dynamic digestion models and assay protocols used for phenolic compound research regarding bioaccesibility and interaction with colonic microbiota. Of 284 records identified, those including dynamic multicompartmental digestion models for the study of phenolic compound bioaccesibility, bioactivity and the effects of microbiota were included, with 57 studies meeting the inclusion criteria. Different conditions and experimental configurations as well as administered doses, sample treatments and microbiological assays of dynamic digestion studies on polyphenols were recorded and compared to establish their relevance for the dynamic in vitro digestion of phenolic compounds. While similarities were observed in certain experimental areas, a high variability was found in others, such as administered doses. A description of considerations on the study of the digestion of phenolic compounds is proposed to enhance comparability in research.

14.
Food Chem ; 395: 133595, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-35809548

RESUMEN

Omega-3 rich vegetable oils, such as walnut oil, are gaining interest because of their health benefits. Synthetized homologous series of hydroxytyrosol alkyl esters (HTEs) with different alkyl chain lengths (C4-C18) were incorporated in purified walnut oil (PWO) spray-dried microparticles, designed with Capsul® (C) as encapsulating agent and sodium alginate (SA) as outer layer (PWO-C/SA). The encapsulation efficiency (>87%) and Tg of PWO-C/SA microparticles were not affected by the HTEs. The incorporation of HTE-C10 increased the melting point (185.0 ± 1.3 °C), decreasing the formation of Dimers + Polymers (1.12 ± 0.05% at day 35 of storage) and the crystallinity of the microparticles (>170 °C). The highest stability of PWO-C(HTE-C10)/SA suggests a specific location of HTE-C10 at the oil:water interface. The SA layer delayed the release of fatty acids during in vitro digestion. The incorporation of HTEs of medium chain length can be a suitable strategy to protect unsaturated oils encapsulated by spray-drying.


Asunto(s)
Antioxidantes , Juglans , Alginatos , Ésteres , Alcohol Feniletílico/análogos & derivados
15.
Heliyon ; 7(4): e06737, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33898839

RESUMEN

Aim of this work was to evaluate the antimicrobial activity and physical characteristics of citral microencapsulated with dextrin (Dx) by spray drying. The encapsulation was optimized using response surface methodology (RSM), maximizing yield and efficiency, considering as independent variables the citral:Dx ratio (1:5 and 1:20) and the inlet air temperature (120 and 200 °C). Yield and efficiency under optimal conditions were 71.9% and 99.9%, respectively. Antimicrobial activity against Escherichia coli, Salmonella enterica, Staphylococcus aureus and Bacillus cereus of the citral microparticles obtained under optimal conditions and of free citral was evaluated using the disk diffusion methodology. Both compounds showed a broad spectrum inhibitory effect, being Escherichia coli and Bacillus cereus the most sensitive microorganisms. The inhibition ratio varied between 55 and 75%, and the antibacterial activity was maintained after microencapsulation. The minimum inhibitory concentrations of free citral were above 0.8 mg/mL. The optimal citral microparticles showed acceptable physicochemical characteristics and broad-spectrum antimicrobial activity. Polymer and emulsifier used in microencapsulation protected the functional activity of citral, thus suggesting that these microparticles could be used in the design of antimicrobial food systems to extend the shelf life of perishable foods.

16.
Food Res Int ; 147: 110558, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34399535

RESUMEN

Food behavior during oral processing plays an essential role in the perception of texture. It depends on different factors, including food structure and composition, as well as its behavior when interacting with saliva. This study aimed to investigate the effect of particle size and thickener type of emulsified systems on physical, rheological, tribological, and oral oily coating properties under oral conditions. Six matrices based on oil-in-water emulsions with different particle sizes (NE-nanoemulsion and CE-conventional emulsions) were prepared using a mixture of emulsifiers (10% w/w) and sunflower oil (10% w/w). Thickened agents were added to the matrices (NE and CE) at different concentrations (3-4.5% w/w of starch-ST or 0.4-0.8% w/w xanthan gum-XG) to obtain equi-viscous samples (NE-EV) with their CE-based counterpart. Results showed a decrease in apparent viscosity values under oral conditions (saliva and shearing at 10 s-1) during the shear time, but this behavior was more evident in starch-based matrices. The lubrication properties of the different matrices depended mainly on the thickener concentration since equi-viscous samples (NE-ST-EV and NE-XG-EV) showed higher coefficient of friction (CoF) values. Finally, oral oily coating was more related to the oil droplets size than to the type of thickener since all NE-based matrices showed a higher amount of coating retained compared to the CE-based ones. Therefore, NE-based matrices could be used as an alternative to increase mouthfeel sensations in food emulsions.


Asunto(s)
Emulsionantes , Emulsiones , Tamaño de la Partícula , Reología , Viscosidad
17.
Foods ; 10(6)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207005

RESUMEN

Phenolic compounds present in extra virgin olive oil (EVOO) could be retained in its byproducts during processing. Among them, hydroxytyrosol and its derivatives deserve special attention due to their health benefits recognized by The European Food Safety Authority (EFSA). In the present research, the presence of these compounds in the filter cake byproduct was studied by combining pressurized liquid extraction (PLE) and high-performance liquid chromatography coupled to time-of-flight mass spectrometry (HPLC-TOF-MS). The applied optimum extraction parameters were 1500 psi, 120 °C and aqueous ethanol (50:50, v/v). The influence of different drying methods (vacuum-, freeze- and spray-drying) in the recovery of phenolic compounds was also evaluated. A total of 16 compounds from EVOO were identified in the extracts, 3 of them being hydroxytyrosol-related compounds, 6 substances of oleoside and elenolic acid derivatives, together with 6 secoiridoids and 1 lignan. The results highlighted the great number of phenolic compounds recovered from filter cake with these techniques, being even higher than the reported content in EVOO and other byproducts. The combination of PLE and freeze-drying resulted in being the best procedure for the recovery of phenolic compounds from filter cake byproduct.

18.
Foods ; 10(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498325

RESUMEN

Pressurized liquid extraction (PLE) is a clean and environmentally friendly alternative for the recovery of bioactive compounds from fruit by-products. Herein we focused on PLE for the extraction of bioactive compounds from pomegranate peel using a combination of pressurized water and ethanol. The main aim was to determine the optimal PLE conditions, i.e., ethanol percentage and process temperature, to obtain a pomegranate peel extract (PPE) with maximum total phenolic content (TPC), punicalagin content, and antimicrobial activity (AMA). The experimental design was conducted using a central composite design with axial points. Response surface methodology was applied to optimize the response variables using the desirability function. Multiple response optimization indicated a process temperature of 200 °C and ethanol of 77% as optimal conditions. The TPC and the punicalagin content of PPE-PLE obtained under optimal conditions were 164.3 ± 10.7 mg GAE/g DW and 17 ± 3.6 mg/g DW, respectively. Our findings support the efficacy of PLE on TPC recovery but not in punicalagin recovery. The AMA against S. aureus was 14 mm. The efficacy of PPE-PLE in food applications must continue to be studied in order to achieve adequate information on its potential for developing new food additives.

19.
Foods ; 9(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31935880

RESUMEN

Murta and calafate have been traditionally used by indigenous and rural peoples of Chile. Research on murta and calafate has gained interest due to their attractive sensory properties as well as a global trend in finding new fruits with potential health benefits. The objective of this review was to summarize the potential use of murta and calafate as sources of nutraceuticals regarding both the traditional and the up-to-date scientific knowledge. A search of historical documents recorded in the Digital National Library as well as scientific articles in the Web of Science database were performed using combinations of keywords with the botanical nomenclature. Peer-reviewed scientific articles did meet the inclusion criteria (n = 38) were classified in phytochemicals (21 papers) and biological activity (17 papers). Murta and calafate are high oxygen radical absorbance capacity (ORAC)-value fruits and promising sources of natural antioxidants, antimicrobial, and vasodilator compounds with nutraceutical potential. The bioactivity of anthocyanin metabolites in murta and calafate must continue to be studied in order to achieve adequate information on the biological activity and health-promoting effects derived for the consumption of murta and calafate fruit.

20.
Antioxidants (Basel) ; 9(12)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327590

RESUMEN

Purified walnut oil (PWO) microparticles with Capsul® (C, encapsulating agent), sodium alginate (SA) as outer layer and ascorbic acid (AA) as oxygen scavenger were obtained by spray drying using a three-fluid nozzle. AA was incorporated in the inner infeed (PWO-C(AA)/SA), in the outer infeed (PWO-C/SA(AA)) and in both infeed (PWO-C(AA)/SA(AA)). PWO-C(AA)/SA (4.56 h) and POW-C(AA)/SA(AA) (2.60 h) microparticles showed higher induction period than POW-C/SA(AA) (1.17 h), and lower formation of triacylglycerol dimers and polymers during storage (40 °C). Therefore, AA located in the inner infeed improved the oxidative stability of encapsulated PWO by removing the residual oxygen. AA in the SA outer layer did not improve the oxidative stability of encapsulated PWO since oxygen diffusion through the microparticles was limited and/or AA weakened the SA layer structure. The specific-location of AA (inner infeed) is a strategy to obtain stable spray-dried polyunsaturated oil-based microparticles for the design of foods enriched with omega-3 fatty acids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA