RESUMEN
We have investigated how four different pour point depressant (PPD) polymers affect the pour point transition in mixtures of a single pure wax in a solvent. We used either n-eicosane (C20), CH3(CH2)18CH3, n-tetracosane (C24), CH3(CH2)22CH3 or n-hexatriacontane (C36), CH3(CH2)34CH3 as the wax component with either n-heptane or toluene as the solvent component. For all wax-solvent combinations, the measured variation of wax solubility with temperature is well predicted by ideal solution theory. The variation of pour point temperature as a function of the overall wax concentration is quantitatively modelled using the idea that, for each overall wax concentration, the pour point occurs at a temperature at which a critical volume fraction Ï* of wax crystals has precipitated. Close to the pour point temperature, extraction and examination of the wax crystals show they consist of polydisperse, irregularly-shaped platelets with axial ratios (h/d, where h is the plate thickness and d is the plate long dimension) in the range 0.005-0.05. It is found that the measured Ï* values corresponding to the pour point transitions are weakly correlated with the wax crystal axial ratios (h/d) for all wax-solvent-PPD polymer combinations. These results indicate that the pour point transition occurs at a volume fraction larger than the value at which the volumes of rotation of the platelet crystals overlap, i.e., 2.5(h/d) < Ï* < 11(h/d). PPD polymers work, in part, by increasing the wax crystal axial ratio (h/d), thereby increasing Ï* and reducing the pour point temperature. Since the PPD's ability to modify the wax crystal shape relies on its adsorption to the crystal-solution surface, it is anticipated and observed experimentally that optimum PPD efficacy is correlated with the difference between the wax and the polymer solubility boundary temperatures. This finding and the mechanistic insight gained here provide the basis for a simple and rapid screening test to identify candidate species likely to be effective PPDs for particular wax systems.
RESUMEN
Influenza virus neuraminidase (NA) plays an essential role in release and spread of progeny virions, following the intracellular viral replication cycle. To test whether NA could also facilitate virus entry into cell, we infected cultures of human airway epithelium with human and avian influenza viruses in the presence of the NA inhibitor oseltamivir carboxylate. Twenty- to 500-fold less cells became infected in drug-treated versus nontreated cultures (P < 0.0001) 7 h after virus application, indicating that the drug suppressed the initiation of infection. These data demonstrate that viral NA plays a role early in infection, and they provide further rationale for the prophylactic use of NA inhibitors.
Asunto(s)
Bronquios/virología , Mucosa Nasal/virología , Neuraminidasa/fisiología , Orthomyxoviridae/fisiología , Tráquea/virología , Acetamidas/farmacología , Humanos , Orthomyxoviridae/enzimología , OseltamivirRESUMEN
The recent human infections caused by H5N1, H9N2, and H7N7 avian influenza viruses highlighted the continuous threat of new pathogenic influenza viruses emerging from a natural reservoir in birds. It is generally believed that replication of avian influenza viruses in humans is restricted by a poor fit of these viruses to cellular receptors and extracellular inhibitors in the human respiratory tract. However, detailed mechanisms of this restriction remain obscure. Here, using cultures of differentiated human airway epithelial cells, we demonstrated that influenza viruses enter the airway epithelium through specific target cells and that there were striking differences in this respect between human and avian viruses. During the course of a single-cycle infection, human viruses preferentially infected nonciliated cells, whereas avian viruses as well as the egg-adapted human virus variant with an avian virus-like receptor specificity mainly infected ciliated cells. This pattern correlated with the predominant localization of receptors for human viruses (2-6-linked sialic acids) on nonciliated cells and of receptors for avian viruses (2-3-linked sialic acids) on ciliated cells. These findings suggest that although avian influenza viruses can infect human airway epithelium, their replication may be limited by a nonoptimal cellular tropism. Our data throw light on the mechanisms of generation of pandemic viruses from their avian progenitors and open avenues for cell level-oriented studies on the replication and pathogenicity of influenza virus in humans.
Asunto(s)
Virus de la Influenza A/patogenicidad , Mucosa Respiratoria/microbiología , Animales , Bronquios , Línea Celular , Perros , Humanos , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/fisiología , Riñón , Lectinas , Microscopía Confocal , Mucosa Nasal/microbiología , Ácidos Siálicos/análisis , TráqueaRESUMEN
No reliable cell culture assay is currently available for monitoring human influenza virus sensitivity to neuraminidase inhibitors (NAI). This can be explained by the observation that because of a low concentration of sialyl-alpha2,6-galactose (Sia[alpha2,6]Gal)-containing virus receptors in conventional cell lines, replication of human virus isolates shows little dependency on viral neuraminidase. To test whether overexpression of Sia(alpha2,6)Gal moieties in cultured cells could make them suitable for testing human influenza virus sensitivity to NAI, we stably transfected MDCK cells with cDNA of human 2,6-sialyltransferase (SIAT1). Transfected cells expressed twofold-higher amounts of 6-linked sialic acids and twofold-lower amounts of 3-linked sialic acids than parent MDCK cells as judged by staining with Sambucus nigra agglutinin and Maackia amurensis agglutinin, respectively. After transfection, binding of a clinical human influenza virus isolate was increased, whereas binding of its egg-adapted variant which preferentially bound 3-linked receptors was decreased. The sensitivity of human influenza A and B viruses to the neuraminidase inhibitor oseltamivir carboxylate was substantially improved in the SIAT1-transfected cell line and was consistent with their sensitivity in neuraminidase enzyme assay and with the hemagglutinin (HA) receptor-binding phenotype. MDCK cells stably transfected with SIAT1 may therefore be a suitable system for testing influenza virus sensitivity to NAI.
Asunto(s)
Acetamidas/farmacología , Antivirales/farmacología , Virus de la Influenza A/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores , Sialiltransferasas/metabolismo , Animales , Línea Celular , Inhibidores Enzimáticos/farmacología , Humanos , Virus de la Influenza A/metabolismo , Pruebas de Sensibilidad Microbiana , Oseltamivir , Ácidos Siálicos/metabolismo , Sialiltransferasas/genética , Transfección , beta-D-Galactósido alfa 2-6-SialiltransferasaRESUMEN
Three type A influenza viruses, each of which has a distinct neuraminidase-gene mutation and is resistant to the neuraminidase inhibitor oseltamivir, have been isolated. Previously, in the ferret model, an R292K mutant of a type A (H3N2) virus was not transmitted under conditions in which the wild-type virus was transmitted. This model was used to investigate whether the E119V mutant of a type A (H3N2) virus and the H274Y mutant of a type A (H1N1) virus would be transmitted under similar circumstances. Both mutant viruses were transmitted, although the H274Y mutant required a 100-fold-higher dose for infection of donor ferrets and was transmitted more slowly than was the wild type. Both the mutant and the wild-type viruses retained their genotypic characteristics.