Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(32): 22306-22317, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39083751

RESUMEN

Electrochemical conversion of carbon dioxide (CO2) offers the opportunity to transform a greenhouse gas into valuable starting materials, chemicals, or fuels. Since many CO2 capture strategies employ aqueous alkaline solutions, there is interest in catalyst systems that can act directly on such capture solutions. Herein, we demonstrate new catalyst designs where the electroactive molecules readily mediate the CO2-to-CO conversion in aqueous solutions between pH 4.5 and 10.5. Likewise, the production of CO directly from 2 M KHCO3 solutions (pH 8.2) is possible. The improved molecular architectures are based on cobalt(II) phthalocyanine and contain four cationic trimethylammonium groups that confer water solubility and contribute to the stabilization of activated intermediates via a concentrated positive charge density around the active core. Turnover frequencies larger than 103 s-1 are possible at catalyst concentrations of down to 250 nM in CO2-saturated solutions. The observed rates are substantially larger than the related cobalt phthalocyanine-containing catalysts. Density functional theory calculations support the idea that the excellent catalytic properties are attributed to the ability of the cationic groups to stabilize CO2-bound reduced intermediates in the catalytic cycle. The homogeneous, aqueous CO2 reduction that these molecules perform opens new frontiers for further development of the CoPc platform and sets a greatly improved baseline for CoPc-mediated CO2 upconversion. Ultimately, this discovery uncovers a strategy for the generation of platforms for practical CO2 reduction catalysts in alkaline solutions.

2.
Development ; 148(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33913478

RESUMEN

Tendons and ligaments are fibrous connective tissues vital to the transmission of force and stabilization of the musculoskeletal system. Arising in precise regions of the embryo, tendons and ligaments share many properties and little is known about the molecular differences that differentiate them. Recent studies have revealed heterogeneity and plasticity within tendon and ligament cells, raising questions regarding the developmental mechanisms regulating tendon and ligament identity. Here, we discuss recent findings that contribute to our understanding of the mechanisms that establish and maintain tendon progenitors and their differentiated progeny in the head, trunk and limb. We also review the extent to which these findings are specific to certain anatomical regions and model organisms, and indicate which findings similarly apply to ligaments. Finally, we address current research regarding the cellular lineages that contribute to tendon and ligament repair, and to what extent their regulation is conserved within tendon and ligament development.


Asunto(s)
Diferenciación Celular , Ligamentos/embriología , Desarrollo Musculoesquelético , Células Madre/metabolismo , Tendones/embriología , Animales , Humanos , Ligamentos/citología , Células Madre/citología , Tendones/citología
3.
BMC Biol ; 21(1): 98, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106386

RESUMEN

BACKGROUND: Tumors are complex tissues containing collections of phenotypically diverse malignant and nonmalignant cells. We know little of the mechanisms that govern heterogeneity of tumor cells nor of the role heterogeneity plays in overcoming stresses, such as adaptation to different microenvironments. Osteosarcoma is an ideal model for studying these mechanisms-it exhibits widespread inter- and intra-tumoral heterogeneity, predictable patterns of metastasis, and a lack of clear targetable driver mutations. Understanding the processes that facilitate adaptation to primary and metastatic microenvironments could inform the development of therapeutic targeting strategies. RESULTS: We investigated single-cell RNA-sequencing profiles of 47,977 cells obtained from cell line and patient-derived xenograft models as cells adapted to growth within primary bone and metastatic lung environments. Tumor cells maintained phenotypic heterogeneity as they responded to the selective pressures imposed during bone and lung colonization. Heterogenous subsets of cells defined by distinct transcriptional profiles were maintained within bone- and lung-colonizing tumors, despite high-level selection. One prominent heterogenous feature involving glucose metabolism was clearly validated using immunofluorescence staining. Finally, using concurrent lineage tracing and single-cell transcriptomics, we found that lung colonization enriches for multiple clones with distinct transcriptional profiles that are preserved across cellular generations. CONCLUSIONS: Response to environmental stressors occurs through complex and dynamic phenotypic adaptations. Heterogeneity is maintained, even in conditions that enforce clonal selection. These findings likely reflect the influences of developmental processes promoting diversification of tumor cell subpopulations, which are retained, even in the face of selective pressures.


Asunto(s)
Neoplasias Óseas , Neoplasias Pulmonares , Osteosarcoma , Humanos , Osteosarcoma/genética , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Perfilación de la Expresión Génica , Neoplasias Óseas/genética , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Microambiente Tumoral/genética
4.
Genes Chromosomes Cancer ; 62(1): 17-26, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35801295

RESUMEN

Next-generation sequencing (NGS) assays can sensitively detect somatic variation, and increasingly can enable the identification of complex structural rearrangements. A subset of infantile spindle cell sarcomas, particularly congenital mesoblastic nephromas with classic or mixed histology, have structural rearrangement in the form of internal tandem duplications (ITD) involving EGFR. We performed prospective analysis to identify EGFR ITD through clinical or research studies, as well as retrospective analysis to quantify the frequency of EGFR ITD in pediatric sarcomas. Within our institution, three tumors with EGFR ITD were prospectively identified, all occurring in patients less than 1 year of age at diagnosis, including two renal tumors and one mediastinal soft tissue tumor. These three cases exhibited both cellular and mixed cellular and classic histology. All patients had no evidence of disease progression off therapy, despite incomplete resection. To extend our analysis and quantify the frequency of EGFR ITD in pediatric sarcomas, we retrospectively analyzed a cohort of tumors (n = 90) that were previously negative for clinical RT-PCR-based fusion testing. We identified EGFR ITD in three analyzed cases, all in patients less than 1 year of age (n = 18; 3/18, 17%). Here we expand the spectrum of tumors with EGFR ITD to congenital soft tissue tumors and report an unusual example of an EGFR ITD in a tumor with cellular congenital mesoblastic nephroma histology. We also highlight the importance of appropriate test selection and bioinformatic analysis for identification of this genomic alteration that is unexpectedly common in congenital and infantile spindle cell tumors.


Asunto(s)
Neoplasias Renales , Nefroma Mesoblástico , Sarcoma , Neoplasias de los Tejidos Blandos , Recién Nacido , Niño , Humanos , Estudios Retrospectivos , Nefroma Mesoblástico/genética , Nefroma Mesoblástico/congénito , Nefroma Mesoblástico/patología , Neoplasias de los Tejidos Blandos/genética , Neoplasias Renales/genética , Neoplasias Renales/patología , Sarcoma/genética , Sarcoma/patología , Receptores ErbB/genética
5.
Development ; 146(15)2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31320326

RESUMEN

Tendon and bone are attached by a transitional connective tissue that is morphologically graded from tendinous to osseous and develops from bipotent progenitors that co-express scleraxis (Scx) and Sox9 (Scx+/Sox9+). Scx+/Sox9+ progenitors have the potential to differentiate into either tenocytes or chondrocytes, yet the developmental mechanism that spatially resolves their bipotency at the tendon-bone interface during embryogenesis remains unknown. Here, we demonstrate that development of Scx+/Sox9+ progenitors within the mammalian lower jaw requires FGF signaling. We find that loss of Fgfr2 in the mouse tendon-bone interface reduces Scx expression in Scx+/Sox9+ progenitors and induces their biased differentiation into Sox9+ chondrocytes. This expansion of Sox9+ chondrocytes, which is concomitant with decreased Notch2-Dll1 signaling, prevents formation of a mixed population of chondrocytes and tenocytes, and instead results in ectopic endochondral bone at tendon-bone attachment units. Our work shows that FGF signaling directs zonal patterning at the boundary between tendon and bone by regulating cell fate decisions through a mechanism that employs Notch signaling.


Asunto(s)
Huesos/metabolismo , Condrocitos/citología , Factores de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Tendones/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Huesos/citología , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Maxilares/metabolismo , Ratones , Ratones Noqueados , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/fisiología , Células Madre/fisiología , Tendones/citología , Tenocitos/citología
6.
J Natl Compr Canc Netw ; 19(10): 1116-1121, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34666310

RESUMEN

This case report describes an 18-year-old woman with an unusual epithelioid tumor of the omentum with a novel PRRC2B-ALK fusion. Although the atypical pathologic features raised significant diagnostic challenges, expression of CD30 on tumor cells and detection of an ALK rearrangement provided critical information for selecting targeted therapy in a patient not suitable for surgical resection. Despite an initially promising therapeutic response, the patient died. The efficacy of treatment was confirmed by the lack of viable tumor cells at autopsy. This case highlights the role of timely targeted therapy in patients with rare tumors and novel actionable molecular targets.


Asunto(s)
Sarcoma , Adolescente , Quinasa de Linfoma Anaplásico/genética , Femenino , Humanos , Sarcoma/diagnóstico , Adulto Joven
7.
Pediatr Blood Cancer ; 68(9): e29188, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34137164

RESUMEN

Osteosarcoma is the most common bone tumor in children and young adults. Metastatic and relapsed disease confer poor prognosis, and there have been no improvements in outcomes for several decades. The disease's biological complexity, lack of drugs developed specifically for osteosarcoma, imperfect preclinical models, and limits of existing clinical trial designs have contributed to lack of progress. The Children's Oncology Group Bone Tumor Committee established the New Agents for Osteosarcoma Task Force to identify and prioritize agents for inclusion in clinical trials. The group identified multitargeted tyrosine kinase inhibitors, immunotherapies targeting B7-H3, CD47-SIRPα inhibitors, telaglenastat, and epigenetic modifiers as the top agents of interest. Only multitargeted tyrosine kinase inhibitors met all criteria for frontline evaluation and have already been incorporated into an upcoming phase III study concept. The task force will continue to reassess identified agents of interest as new data become available and evaluate novel agents using this method.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Neoplasias Óseas/tratamiento farmacológico , Niño , Ensayos Clínicos como Asunto , Epigénesis Genética , Humanos , Inmunoterapia , Osteosarcoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas , Adulto Joven
8.
Int J Cancer ; 146(11): 3184-3195, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31621900

RESUMEN

Ewing sarcoma (EWS) is the second most common and aggressive type of metastatic bone tumor in adolescents and young adults. There is unmet medical need to develop and test novel pharmacological targets and novel therapies to treat EWS. Here, we found that EWS expresses high levels of a p53 isoform, delta133p53. We further determined that aberrant expression of delta133p53 induced HGF secretion resulting in tumor growth and metastasis. Thereafter, we evaluated targeting EWS tumors with HGF receptor neutralizing antibody (AMG102) in preclinical studies. Surprisingly, we found that targeting EWS tumors with HGF receptor neutralizing antibody (AMG102) in combination with GD2-specific, CAR-reengineered T-cell therapy synergistically inhibited primary tumor growth and establishment of metastatic disease in preclinical models. Furthermore, our data suggested that AMG102 treatment alone might increase leukocyte infiltration including efficient CAR-T access into tumor mass and thereby improves its antitumor activity. Together, our findings warrant the development of novel CAR-T-cell therapies that incorporate HGF receptor neutralizing antibody to improve therapeutic potency, not only in EWS but also in tumors with aberrant activation of the HGF/c-MET pathway.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Receptores Quiméricos de Antígenos/inmunología , Sarcoma de Ewing/tratamiento farmacológico , Animales , Neoplasias Óseas/patología , Línea Celular Tumoral , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Inmunoterapia Adoptiva/métodos , Ratones , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/inmunología , Sarcoma de Ewing/patología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
9.
Adv Exp Med Biol ; 1258: 111-123, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32767237

RESUMEN

Outcomes for young people diagnosed with osteosarcoma hinge almost exclusively on whether they develop lung metastasis. The striking predilection that osteosarcoma shows for metastatic spread to lung suggests properties and/or lung interactions that generate tissue-specific survival and proliferation advantages. While these mechanisms remain overall poorly defined, studies have begun to describe biological elements important to metastasis. Mechanisms described to date include both cell-autonomous adaptations that allow disseminated tumor cells to survive the stressors imposed by metastasis and intercellular signaling networks that tumor cells exploit to pirate needed signals from surrounding tissues or to recruit other cells that create a more favorable niche. Evidence suggests that cell-autonomous changes are largely driven by epigenetic reprogramming of disseminated tumor cells that facilitates resistance to late apoptosis, manages endoplasmic reticulum (ER) stressors, promotes translation of complex transcripts, and activates clotting pathways. Tumor-host signaling pathways important for lung colonization drive interactions with lung epithelium, mesenchymal stem cells, and mediators of innate and adaptive immunity. In this chapter, we highlight one particular pathway that integrates cell-autonomous adaptations with lung-specific tumor-host interactions. In this mechanism, aberrant ΔNp63 expression primes tumor cells to produce IL6 and CXCL8 upon interaction with lung epithelial cells. This tumor-derived IL6 and CXCL8 then initiates autocrine, osteosarcoma-lung paracrine, and osteosarcoma-immune paracrine interactions that facilitate metastasis. Importantly, many of these pathways appear targetable with clinically feasible therapeutics. Ongoing work to better understand metastasis is driving efforts to improve outcomes by targeting the most devastating complication of this disease.


Asunto(s)
Neoplasias Óseas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Pulmón/patología , Osteosarcoma/patología , Transducción de Señal/efectos de los fármacos , Neoplasias Óseas/tratamiento farmacológico , Proliferación Celular , Humanos , Pulmón/efectos de los fármacos , Neoplasias Pulmonares/patología , Osteosarcoma/tratamiento farmacológico
10.
Dev Dyn ; 248(3): 233-246, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30620790

RESUMEN

BACKGROUND: Bent bone dysplasia syndrome (BBDS), a congenital skeletal disorder caused by dominant mutations in fibroblast growth factor receptor 2 (FGFR2), is characterized by bowed long bones within the limbs. We previously showed that the FGFR2 mutations in BBDS enhance nuclear and nucleolar localization of the receptor; however, exactly how shifts in subcellular distribution of FGFR2 affect limb development remained unknown. RESULTS: Targeted expression of the BBDS mutations in the lateral plate mesoderm of the developing chick induced angulated hindlimbs, a hallmark feature of the disease. Whole-mount analysis of the underlying skeleton revealed bent long bones with shortened bone collars and, in severe cases, dysmorphic epiphyses. Epiphyseal changes were also correlated with joint dislocations and contractures. Histological analysis revealed that bent long bones and joint defects were closely associated with irregularities in skeletal muscle patterning and tendon-to-bone attachment. The spectrum of limb phenotypes induced by the BBDS mutations were recapitulated by targeted expression of wild-type FGFR2 appended with nuclear and nucleolar localization signals. CONCLUSIONS: Our results indicate that the bent long bones in BBDS arise from disruptions in musculoskeletal integration and that increased nuclear and nucleolar localization of FGFR2 plays a mechanistic role in the disease phenotype. 248:233-246, 2019. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Núcleo Celular/química , Extremidades/crecimiento & desarrollo , Proteínas Tirosina Quinasas Receptoras/genética , Receptores de Factores de Crecimiento de Fibroblastos/genética , Animales , Enfermedades del Desarrollo Óseo/genética , Embrión de Pollo , Deformidades Congénitas de las Extremidades/genética , Fenotipo , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores de Factores de Crecimiento de Fibroblastos/fisiología
11.
Genesis ; 57(1): e23252, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30253032

RESUMEN

The skeletal structure of the mammalian middle ear, which is composed of three endochondral ossicles suspended within a membranous air-filled capsule, plays a critical role in conducting sound. Gene mutations that alter skeletal development in the middle ear result in auditory impairment. Mutations in fibroblast growth factor receptor 2 (FGFR2), an important regulator of endochondral and intramembranous bone formation, cause a spectrum of congenital skeletal disorders featuring conductive hearing loss. Although the middle ear malformations in multiple FGFR2 gain-of-function disorders are clinically characterized, those in the FGFR2 loss-of-function disorder lacrimo-auriculo-dento-digital (LADD) syndrome are relatively undescribed. To better understand conductive hearing loss in LADD, we examined the middle ear skeleton of mice with conditional loss of Fgfr2. We find that decreased auditory function in Fgfr2 mutant mice correlates with hypoplasia of the auditory bulla and ectopic bone growth at sites of tendon/ligament attachment. We show that ectopic bone associated with the intra-articular ligaments of the incudomalleal joint is derived from Scx-expressing cells and preceded by decreased expression of the joint progenitor marker Gdf5. Together, these results identify a role for Fgfr2 in development of the middle ear skeletal tissues and suggest potential causes for conductive hearing loss in LADD syndrome.


Asunto(s)
Anomalías Múltiples/genética , Oído Medio/metabolismo , Pérdida Auditiva/genética , Enfermedades del Aparato Lagrimal/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Sindactilia/genética , Anomalías Dentarias/genética , Animales , Desarrollo Óseo , Oído Medio/anomalías , Oído Medio/embriología , Factor 5 de Diferenciación de Crecimiento/metabolismo , Mutación con Pérdida de Función , Ratones , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética
12.
Cancer ; 125(20): 3514-3525, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31355930

RESUMEN

Patients who are diagnosed with osteosarcoma (OS) today receive the same therapy that patients have received over the last 4 decades. Extensive efforts to identify more effective or less toxic regimens have proved disappointing. As we enter a postgenomic era in which we now recognize OS not as a cancer of mutations but as one defined by p53 loss, chromosomal complexity, copy number alteration, and profound heterogeneity, emerging threads of discovery leave many hopeful that an improving understanding of biology will drive discoveries that improve clinical care. Under the organization of the Bone Tumor Biology Committee of the Children's Oncology Group, a team of clinicians and scientists sought to define the state of the science and to identify questions that, if answered, have the greatest potential to drive fundamental clinical advances. Having discussed these questions in a series of meetings, each led by invited experts, we distilled these conversations into a series of seven Provocative Questions. These include questions about the molecular events that trigger oncogenesis, the genomic and epigenomic drivers of disease, the biology of lung metastasis, research models that best predict clinical outcomes, and processes for translating findings into clinical trials. Here, we briefly present each Provocative Question, review the current scientific evidence, note the immediate opportunities, and speculate on the impact that answered questions might have on the field. We do so with an intent to provide a framework around which investigators can build programs and collaborations to tackle the hardest problems and to establish research priorities for those developing policies and providing funding.


Asunto(s)
Epigenómica , Genómica , Osteosarcoma/terapia , Investigación Biomédica Traslacional , Niño , Humanos , Mutación/genética , Osteosarcoma/epidemiología , Osteosarcoma/genética , Osteosarcoma/patología , Proteómica , Proteína p53 Supresora de Tumor/genética
13.
J Pediatr Hematol Oncol ; 41(4): e206-e209, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30531598

RESUMEN

Myoepithelial carcinomas (MC) represent aggressive tumors that occur in a myriad of ages and anatomic locations. The rarity and histologic similarity with other tumors make them difficult to diagnosis. We report an extremely rare case of a right ventricular outflow tract mass identified to be an intracardiac MC in a 4-month-old male infant. Pathology revealed an EWS-KLF15 translocation. Treatment included gross total resection and intensive chemotherapy. Recurrent cardiac mass with brain metastasis was seen 16 months after primary diagnosis. We describe the rarity of intracardiac MC in pediatric patients and the challenges encountered in the multimodal management of this patient.


Asunto(s)
Neoplasias Cardíacas/patología , Mioepitelioma/patología , Resultado Fatal , Neoplasias Cardíacas/genética , Neoplasias Cardíacas/terapia , Humanos , Lactante , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Mioepitelioma/genética , Mioepitelioma/terapia , Proteínas Nucleares/genética , Fusión de Oncogenes , Proteína EWS de Unión a ARN/genética
14.
J Chem Phys ; 151(19): 194501, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31757151

RESUMEN

The transport of small penetrants through disordered materials with glassy dynamics is encountered in applications ranging from drug delivery to chemical separations. Nonetheless, understanding the influence of the matrix structure and fluctuations on penetrant motions remains a persistent challenge. Here, we use event-driven molecular dynamics to investigate the transport of small, hard-sphere tracers embedded in matrices of square-well particles. Short-range attractions between matrix particles give rise to reentrant dynamics in the supercooled regime, in which the liquid's relaxation time increases dramatically upon heating or cooling. Heating results in a "repulsive" supercooled liquid where relaxations are frustrated by steric interactions between particles, whereas cooling produces an "attractive" liquid in which relaxations are hindered by long-lived interparticle bonds. Further cooling or heating, or compression, of the supercooled liquids results in the formation of distinct glasses. Our study reveals that tracer transport in these supercooled liquids and glasses is influenced by the matrix structure and dynamics. The relative importance of each factor varies between matrices and is examined in detail by analyzing particle mean-square displacements, caging behavior, and trajectories sampled from the isoconfigurational ensemble. We identify features of tracer dynamics that reveal the spatial and temporal heterogeneity of the matrices and show that matrix arrest is insufficient to localize tracers.

15.
J Pers Assess ; 101(5): 544-555, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29424554

RESUMEN

We examined associations between prehire California Psychological Inventory (CPI) and prorated Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2-RF) scores (calculated from MMPI profiles) and supervisor ratings for a sample of 143 male police officers. Substantive scale scores in this sample were meaningfully lower than those obtained by the tests' normative samples in the case of the MMPI-2-RF and meaningfully higher in the case of the CPI (indicating less psychological dysfunction). Test scores from both instruments showed substantial range restriction, consistent with those produced by members of the police candidate comparison groups (Corey & Ben-Porath, 2014 ; Roberts & Johnson, 2001 ). After applying a statistical correction for range restriction, we found a number of meaningful associations between both CPI and MMPI-2-RF substantive scale scores and supervisor ratings. For the MMPI-2-RF, findings for scales from the emotional dysfunction and interpersonal functioning domains of the test were particularly strong. For the CPI, findings for scales indicating conformity with social norms, integrity, and tolerance were strong, as were the findings for an index indicating risk of termination. Hierarchical regression analyses showed that MMPI-2-RF and CPI scores complement each other, accounting for incremental variance in the prediction of job-related variables over and above each other. Implications of these findings for assessment science and practice are discussed.


Asunto(s)
MMPI/normas , Personalidad , Policia/psicología , Rendimiento Laboral/normas , Adulto , Femenino , Humanos , Masculino , Trastornos Mentales/diagnóstico , Persona de Mediana Edad , Psicometría , Reproducibilidad de los Resultados
16.
J Environ Manage ; 248: 109286, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31344558

RESUMEN

A number of watershed partnerships have emerged in the western US to address the impacts of wildfire through investing in wildfire mitigation activities. To motivate collective action and design effective risk mitigation programs, these stakeholders draw on evidence linking wildfire mitigation to outcomes of interest. To advance knowledge in this area, we 1) assessed the strength of existing scientific evidence linking wildfire mitigation treatments with societal outcomes and 2) measured the importance of this evidence to watershed partnerships in the western US. To address objective one, we created a systematic evidence map to identify the most common wildfire mitigation treatment and societal outcome relationships reported. From the more than 100 studies examined, we found that the most commonly studied linkages were related to the impacts of thinning on infrastructure and timber. To answer objective two, we surveyed 38 professionals affiliated with organizations involved in eight watershed partnerships in the western US. We asked about the relative importance and strength of evidence linking wildfire treatments to societal outcomes for their watershed partnership, and used this information to create an importance-strength analysis and gap analysis. We found that most linkages were considered important to these organizations, and that the biggest gap identified was for evidence linking mulching to water quality or quantity outcomes. Forest and wildfire specialists perceived a larger need for additional evidence generation than other professional groups. Jointly, the results from this study point to areas of evidence generation important for watershed partnerships and other organizations involved in wildfire mitigation, and suggest a need to more thoroughly disseminate information about existing evidence to this new group of stakeholders investing in wildfire risk mitigation.


Asunto(s)
Incendios , Incendios Forestales , Bosques , Encuestas y Cuestionarios
17.
Hum Mol Genet ; 25(R2): R86-R93, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27346519

RESUMEN

Craniofacial development is an intricate process of patterning, morphogenesis, and growth that involves many tissues within the developing embryo. Genetic misregulation of these processes leads to craniofacial malformations, which comprise over one-third of all congenital birth defects. Significant advances have been made in the clinical management of craniofacial disorders, but currently very few treatments specifically target the underlying molecular causes. Here, we review recent studies in which modeling of craniofacial disorders in primary patient cells, patient-derived induced pluripotent stem cells (iPSCs), and mice have enhanced our understanding of the etiology and pathophysiology of these disorders while also advancing therapeutic avenues for their prevention.

18.
Inorg Chem ; 56(14): 7948-7959, 2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28644016

RESUMEN

The new lanthanide-dicyanoaurate coordination polymers [nBu4N]2[Ln(NO3)4Au(CN)2] (Ln = Sm, Dy) and Sm[Au(CN)2]3·3H2O were prepared and structurally characterized and their luminescence spectra described. The emissions of solid-solutions of [nBu4N]2[Ln(NO3)4Au(CN)2] (Ln = Ce, Sm, Eu, Tb, and Dy) were explored with an emphasis on their capacity for luminescent color tuning and white-light emission via the selection of composition, excitation wavelength, and temperature. Specifically, the binary solid-solutions [nBu4N]2[Ce0.4Dy0.6(NO3)4Au(CN)2] and [nBu4N]2[Sm0.75Tb0.25(NO3)4Au(CN)2], and the ternary solid-solutions [nBu4N]2[Ce0.2Sm0.6Tb0.2(NO3)4Au(CN)2] and [nBu4N]2[Ce0.33Eu0.17Tb0.5(NO3)4Au(CN)2], were prepared and examined in terms of suitability for color-tuning capacity. These results showcase that the emission from the [nBu4N]2[Ln(NO3)4Au(CN)2] framework has the capacity to be tuned to extremes corresponding to deep reds (CIE coordinates 0.65, 0.35), greens (0.28, 0.63), and deep blue/violet (0.16, 0.06) as well as white (0.31, 0.33). Conversely, the emission of the Sm[Au(CN)2]3·3H2O framework, when doped with the green phosphor Tb(III), changes only slightly because of the predominantly Au(I)-based emission and Sm(III) → Au(I) energy transfer.

19.
BMC Cancer ; 16(1): 784, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27724924

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) regulate the expression of networks of genes and their dysregulation is well documented in human malignancies; however, limited information exists regarding the impact of miRNAs on the development and progression of osteosarcoma (OS). Canine OS exhibits clinical and molecular features that closely resemble the corresponding human disease and it is considered a well-established spontaneous animal model to study OS biology. The purpose of this study was to investigate miRNA dysregulation in canine OS. METHODS: We evaluated miRNA expression in primary canine OS tumors and normal canine osteoblast cells using the nanoString nCounter system. Quantitative PCR was used to validate the nanoString findings and to assess miR-9 expression in canine OS tumors, OS cell lines, and normal osteoblasts. Canine osteoblasts and OS cell lines were stably transduced with pre-miR-9 or anti-miR-9 lentiviral constructs to determine the consequences of miR-9 on cell proliferation, apoptosis, invasion and migration. Proteomic and gene expression profiling of normal canine osteoblasts with enforced miR-9 expression was performed using 2D-DIGE/tandem mass spectrometry and RNA sequencing and changes in protein and mRNA expression were validated with Western blotting and quantitative PCR. OS cell lines were transduced with gelsolin (GSN) shRNAs to investigate the impact of GSN knockdown on OS cell invasion. RESULTS: We identified a unique miRNA signature associated with primary canine OS and identified miR-9 as being significantly overexpressed in canine OS tumors and cell lines compared to normal osteoblasts. Additionally, high miR-9 expression was demonstrated in tumor-specific tissue obtained from primary OS tumors. In normal osteoblasts and OS cell lines transduced with miR-9 lentivirus, enhanced invasion and migration were observed, but miR-9 did not affect cell proliferation or apoptosis. Proteomic and transcriptional profiling of normal canine osteoblasts overexpressing miR-9 identified alterations in numerous genes, including upregulation of GSN, an actin filament-severing protein involved in cytoskeletal remodeling. Lastly, stable downregulation of miR-9 in OS cell lines reduced GSN expression with a concomitant decrease in cell invasion and migration; concordantly, cells transduced with GSN shRNA demonstrated decreased invasive properties. CONCLUSIONS: Our findings demonstrate that miR-9 promotes a metastatic phenotype in normal canine osteoblasts and malignant OS cell lines, and that this is mediated in part by enhanced GSN expression. As such, miR-9 represents a novel target for therapeutic intervention in OS.


Asunto(s)
Neoplasias Óseas/genética , Neoplasias Óseas/patología , MicroARNs/genética , Osteosarcoma/genética , Osteosarcoma/patología , Animales , Apoptosis/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/mortalidad , Caspasas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Análisis por Conglomerados , Modelos Animales de Enfermedad , Perros , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia , Osteoblastos/metabolismo , Osteosarcoma/metabolismo , Osteosarcoma/mortalidad , Fenotipo , Proteómica/métodos , Transcriptoma
20.
Pediatr Blood Cancer ; 63(4): 618-26, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26575538

RESUMEN

BACKGROUND: Over 10,000 US children are diagnosed with cancer yearly. Though outcomes have improved by optimizing conventional therapies, recent immunotherapeutic successes in adult cancers are emerging. Cytotoxic T lymphocytes (CTLs) are the primary executioners of adaptive antitumor immunity and require antigenic presentation in the context of major histocompatibility complex (MHC) class I and the associated ß-2-microglobulin (B2M). Loss of MHC I expression is a common immune escape mechanism in adult malignancies, but pediatric cancers have not been thoroughly characterized. The essential nature of MHC I expression in CTL-mediated cell death may dictate the success of immunotherapies, which rely on eliciting an adaptive response. PROCEDURE: We queried pediatric tumor microarray databases for MHC I and B2M gene expression. We detected MHC I in pediatric tumor cell lines by flow cytometry and characterized MHC I and B2M expression in patient samples by immunohistochemistry. To determine whether therapeutic approaches might enhance MHC I expression in selected models in vitro, we tested effects of exposure to IFN-γ and histone deacetylase inhibitors. RESULTS: Pediatric tumors overall, as well as samples within select individual tumor subtypes, exhibit wide ranges of MHC I and B2M gene and protein expression. For most cell lines tested, MHC I was inducible in vitro. CONCLUSIONS: MHC I and B2M expression vary among pediatric tumor types and should be evaluated as potential biomarkers, which might identify patients most likely to benefit from MHC I dependent immunotherapies. Modulation of MHC I expression may be a promising mechanism for enhancing MHC I dependent immunotherapeutic efficacy.


Asunto(s)
Ensayos Clínicos como Asunto/métodos , Antígenos de Histocompatibilidad Clase I/biosíntesis , Inmunoterapia/métodos , Neoplasias/inmunología , Selección de Paciente , Microglobulina beta-2/biosíntesis , Línea Celular Tumoral , Niño , Citometría de Flujo , Antígenos de Histocompatibilidad Clase I/análisis , Humanos , Inmunohistoquímica , Neoplasias/terapia , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Matrices Tisulares , Microglobulina beta-2/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA