Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 364: 143090, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39154765

RESUMEN

Oil sands process-affected water (OSPW) is a source of atmospheric emission for polycyclic aromatic compounds (PACs), compounds known to have toxic effects on humans. Estimating emissions and assessing the chemical fate of PACs requires measured or predicted physical-chemical properties such as Henry's law constants (H), that can be used to predict chemical transfer into the atmosphere. OSPW is a complex water-based mixture that is highly variable in composition and nature and contains both organic and inorganic ions. This study uses COSMO-RS solvation theory to estimate and compare Henry's law constants for a set of PACs in both water and theoretically modelled OSPW, to assess the expected deviation that occurs from pure water H values due to the ionic content within OSPW. Experimental measurements of Henry's law constants for PACs in pure water and OSPW using EVA-coated passive dosing and sampler beads were also made in support of our theoretical predictions. For the theory work, OSPW composition data for the Athabasca oil sands in Alberta were used to model a simulated OSPW environment with realistic sodium, chloride, fluoride, sulfate, potassium, bicarbonate, and naphthenic acid concentrations. Theory results indicate that the combined presence of these ions at OSPW concentrations has a negligible effect on H values, causing on average a 3% or 0.014 log unit deviation. By comparison, temperature has a much larger influence on H values, with estimations showing an average 0.20 log unit increase for a 5 °C increase in temperature. The experimental results demonstrate that Henry's law constants can be accurately and precisely measured with this technique in pure water but with less precision in OSPW. Nevertheless, the experimental results support the conclusion that Henry's law constants for OSPW can be accurately estimated assuming a pure water phase.


Asunto(s)
Yacimiento de Petróleo y Gas , Hidrocarburos Policíclicos Aromáticos , Agua , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/análisis , Agua/química , Yacimiento de Petróleo y Gas/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Alberta , Arena/química , Modelos Químicos , Monitoreo del Ambiente
2.
Environ Pollut ; 269: 116115, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33279269

RESUMEN

Alberta's oil sands tailings ponds are suspected to be a source of fugitive emissions of polycyclic aromatic compounds (PACs) to the atmosphere. Here we report, for the first time, fluxes of 6 parent and 21 alkylated PACs based on the measured co-located air and water concentrations using a two-film fugacity-based model (FUG), an inverse dispersion model (DISP) and a simple box model (BOX). Air samples were collected at the Suncor Tailings Pond 2/3 using a high volume air sampler from the "pond" and towards the pond ("non-pond") directions separately. Mean ∑27PACs in air from the "pond" direction was greater than the "non-pond" direction by a factor of 17. Water-air fugacity ratio of 20 PACs quantifiable in water indicated net volatilization from water. Dispersion and box model results also indicated upward fluxes of 22 PACs. Correlation between the estimated flux results of BOX and DISP model was statistically significant (r = 0.99 and p < 0.05), and correlation between FUG and DISP results ranged from 0.54 to 0.85. In this first-ever assessment of PAC fluxes from tailings pond, the three models confirmed volatilization fluxes of PACs indicating Suncor Tailings Pond 2/3 is a source of PAC emissions to the atmosphere. This study addressed a key data gap identified in the Joint Oil Sands Monitoring Emissions Inventory Compilation Report (Government of Alberta and Canada, 2016) which is the lack of consistent real-world tailings pond fugitive emission monitoring of organic chemicals. Our findings highlight the need for measurements from other tailings ponds to determine their overall contribution in releasing PACs to the atmosphere. This paper presents a practical method for estimating PAC emissions from other tailings ponds, which can provide a better understanding of these fugitive emissions, and thereby help to improve the overall characterization of emissions in the oil sands region.


Asunto(s)
Compuestos Policíclicos , Estanques , Alberta , Yacimiento de Petróleo y Gas , Compuestos Orgánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA