Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chromosoma ; 131(4): 239-251, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35978051

RESUMEN

The maintenance of genome integrity is ensured by proper chromosome inheritance during mitotic and meiotic cell divisions. The chromosomal counterpart responsible for chromosome segregation to daughter cells is the centromere, at which the spindle apparatus attaches through the kinetochore. Although all mammalian centromeres are primarily composed of megabase-long repetitive sequences, satellite-free human neocentromeres have been described. Neocentromeres and evolutionary new centromeres have revolutionized traditional knowledge about centromeres. Over the past 20 years, insights have been gained into their organization, but in spite of these advancements, the mechanisms underlying their formation and evolution are still unclear. Today, through modern and increasingly accessible genome editing and long-read sequencing techniques, research in this area is undergoing a sudden acceleration. In this article, we describe the primary sequence of a previously described human chromosome 3 neocentromere and observe its possible evolution and repair results after a chromosome breakage induced through CRISPR-Cas9 technologies. Our data represent an exciting advancement in the field of centromere/neocentromere evolution and chromosome stability.


Asunto(s)
Sistemas CRISPR-Cas , Centrómero , Humanos , Animales , Centrómero/genética , Cinetocoros , Segregación Cromosómica , Rotura Cromosómica , Mamíferos
2.
Chromosoma ; 129(1): 57-67, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31925526

RESUMEN

In the Cercopithecini ancestor two chromosomes, homologous to human chromosomes 20 and 21, fused to form the Cercopithecini specific 20/21 association. In some individuals from the genus Cercopithecus, this association was shown to be polymorphic for the position of the centromere, suggesting centromere repositioning events. We set out to test this hypothesis by defining the evolutionary history of the 20/21 association in four Cercopithecini species from three different genera. The marker order of the various 20/21 associations was established using molecular cytogenetic techniques, including an array of more than 100 BACs. We discovered that five different forms of the 20/21 association were present in the four studied Cercopithecini species. Remarkably, in the two Cercopithecus species, we found individuals in which one homolog conserved the ancestral condition, but the other homolog was highly rearranged. The phylogenetic analysis showed that the heterozygosity in these two species originated about 8 million years ago and was maintained for this entire arc of time, surviving multiple speciation events. Our report is a remarkable extension of Dobzhansky's pioneering observation in Drosophila concerning the maintenance of chromosomal heterozygosity due to selective advantage. Dobzhansky's hypothesis recently received strong support in a series of detailed reports on the fruit fly genome. Our findings are first extension to primates, indeed to Old World monkeys phylogenetically close to humans of an analogous situation. Our results have important implications for hypotheses on how chromosome rearrangements, selection, and speciation are related.


Asunto(s)
Cromosomas de los Mamíferos , Evolución Molecular , Haplorrinos/genética , Heterocigoto , Animales , Evolución Biológica , Centrómero , Duplicación Cromosómica , Pintura Cromosómica , Cromosomas Artificiales Bacterianos , Humanos , Hibridación Fluorescente in Situ , Cariotipificación
3.
Genome Res ; 26(4): 427-39, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26883546

RESUMEN

The distribution of genetic diversity in great ape species is likely to have been affected by patterns of dispersal and mating. This has previously been investigated by sequencing autosomal and mitochondrial DNA (mtDNA), but large-scale sequence analysis of the male-specific region of the Y Chromosome (MSY) has not yet been undertaken. Here, we use the human MSY reference sequence as a basis for sequence capture and read mapping in 19 great ape males, combining the data with sequences extracted from the published whole genomes of 24 additional males to yield a total sample of 19 chimpanzees, four bonobos, 14 gorillas, and six orangutans, in which interpretable MSY sequence ranges from 2.61 to 3.80 Mb. This analysis reveals thousands of novel MSY variants and defines unbiased phylogenies. We compare these with mtDNA-based trees in the same individuals, estimating time-to-most-recent common ancestor (TMRCA) for key nodes in both cases. The two loci show high topological concordance and are consistent with accepted (sub)species definitions, but time depths differ enormously between loci and (sub)species, likely reflecting different dispersal and mating patterns. Gorillas and chimpanzees/bonobos present generally low and high MSY diversity, respectively, reflecting polygyny versus multimale-multifemale mating. However, particularly marked differences exist among chimpanzee subspecies: The western chimpanzee MSY phylogeny has a TMRCA of only 13.2 (10.8-15.8) thousand years, but that for central chimpanzees exceeds 1 million years. Cross-species comparison within a single MSY phylogeny emphasizes the low human diversity, and reveals species-specific branch length variation that may reflect differences in long-term generation times.


Asunto(s)
ADN Mitocondrial , Hominidae/clasificación , Hominidae/genética , Filogenia , Cromosoma Y , Distribución Animal , Animales , Femenino , Orden Génico , Genoma , Genómica , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Conducta Sexual Animal
4.
Genome Res ; 25(12): 1921-33, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26377836

RESUMEN

We describe a genome reference of the African green monkey or vervet (Chlorocebus aethiops). This member of the Old World monkey (OWM) superfamily is uniquely valuable for genetic investigations of simian immunodeficiency virus (SIV), for which it is the most abundant natural host species, and of a wide range of health-related phenotypes assessed in Caribbean vervets (C. a. sabaeus), whose numbers have expanded dramatically since Europeans introduced small numbers of their ancestors from West Africa during the colonial era. We use the reference to characterize the genomic relationship between vervets and other primates, the intra-generic phylogeny of vervet subspecies, and genome-wide structural variations of a pedigreed C. a. sabaeus population. Through comparative analyses with human and rhesus macaque, we characterize at high resolution the unique chromosomal fission events that differentiate the vervets and their close relatives from most other catarrhine primates, in whom karyotype is highly conserved. We also provide a summary of transposable elements and contrast these with the rhesus macaque and human. Analysis of sequenced genomes representing each of the main vervet subspecies supports previously hypothesized relationships between these populations, which range across most of sub-Saharan Africa, while uncovering high levels of genetic diversity within each. Sequence-based analyses of major histocompatibility complex (MHC) polymorphisms reveal extremely low diversity in Caribbean C. a. sabaeus vervets, compared to vervets from putatively ancestral West African regions. In the C. a. sabaeus research population, we discover the first structural variations that are, in some cases, predicted to have a deleterious effect; future studies will determine the phenotypic impact of these variations.


Asunto(s)
Chlorocebus aethiops/genética , Genoma , Genómica , Animales , Chlorocebus aethiops/clasificación , Pintura Cromosómica , Biología Computacional/métodos , Evolución Molecular , Reordenamiento Génico , Variación Genética , Genómica/métodos , Cariotipo , Complejo Mayor de Histocompatibilidad/genética , Anotación de Secuencia Molecular , Filogenia , Filogeografía
5.
Chromosoma ; 125(4): 747-56, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26667930

RESUMEN

Fluorescence in situ hybridization (FISH), especially chromosome painting, has been extensively exploited in the phylogenetic reconstruction of primate evolution. Although chromosome painting is a key method to map translocations, it is not effective in detecting chromosome inversions, which may be up to four times more frequent than other chromosomal rearrangements. BAC-FISH instead can economically delineate marker order and reveal intrachromosomal rearrangements. However, up to now, BAC-FISH was rarely used to study the chromosomes of New World monkeys partly due to technical difficulties. In this paper, we used BAC-FISH to disentangle the complex evolutionary history of the ancestral 14/15 association in NWMs, beginning from the squirrel monkey (Saimiri boliviensis). To improve the hybridization efficiency of BAC-FISH in NWMs, we "translated" the human BACs into Callithrix jacchus (CJA) BACs, which yielded much higher hybridization efficiencies on other NWM species than human BACs. Our results disclosed 14 synteny blocks in squirrel monkeys, 7 more than with chromosome painting. We then applied a subset of CJA BACs on six other NWM species. The comparison of the hybridization pattern of these species contained phylogenetic information to discriminate evolutionary relationships. Notably Aotus was found to share an inversion with Callithrix, thus definitely assigning the genus Aotus to Cebidae. The present study can be seen as a paradigmatic approach to investigate the phylogenetics of NWMs by molecular cytogenetics.


Asunto(s)
Inversión Cromosómica/genética , Pintura Cromosómica/métodos , Cromosomas Artificiales Bacterianos/genética , Sintenía/genética , Translocación Genética/genética , Animales , Atelinae , Evolución Biológica , Línea Celular , Evolución Molecular , Humanos , Cariotipo , Filogenia , Pitheciidae
6.
Chromosoma ; 124(2): 277-87, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25413176

RESUMEN

The centromere directs the segregation of chromosomes during mitosis and meiosis. It is a distinct genetic locus whose identity is established through epigenetic mechanisms that depend on the deposition of centromere-specific centromere protein A (CENP-A) nucleosomes. This important chromatin domain has so far escaped comprehensive molecular analysis due to its typical association with highly repetitive satellite DNA. In previous work, we discovered that the centromere of horse chromosome 11 is completely devoid of satellite DNA; this peculiar feature makes it a unique model to dissect the molecular architecture of mammalian centromeres. Here, we exploited this native satellite-free centromere to determine the precise localization of its functional domains in five individuals: We hybridized DNA purified from chromatin immunoprecipitated with an anti CENP-A antibody to a high resolution array (ChIP-on-chip) of the region containing the primary constriction of horse chromosome 11. Strikingly, each individual exhibited a different arrangement of CENP-A binding domains. We then analysed the organization of each domain using a single nucleotide polymorphism (SNP)-based approach and single molecule analysis on chromatin fibres. Examination of the ten instances of chromosome 11 in the five individuals revealed seven distinct 'positional alleles', each one extending for about 80-160 kb, were found across a region of about 500 kb. Our results demonstrate that CENP-A binding domains are autonomous relative to the underlying DNA sequence and are characterized by positional instability causing the sliding of centromere position. We propose that this dynamic behaviour may be common in mammalian centromeres and may determine the establishment of epigenetic alleles.


Asunto(s)
Centrómero/genética , Cromosomas de los Mamíferos/genética , Caballos/genética , Alelos , Animales , Autoantígenos/genética , Línea Celular , Proteína A Centromérica , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Clonación Molecular , ADN Satélite , Epigénesis Genética , Femenino , Masculino , Meiosis , Procedimientos Analíticos en Microchip , Mitosis , Nucleosomas/genética , Polimorfismo de Nucleótido Simple
7.
Nucleic Acids Res ; 42(14): 9131-45, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25034695

RESUMEN

The mechanism for generating double minutes chromosomes (dmin) and homogeneously staining regions (hsr) in cancer is still poorly understood. Through an integrated approach combining next-generation sequencing, single nucleotide polymorphism array, fluorescent in situ hybridization and polymerase chain reaction-based techniques, we inferred the fine structure of MYC-containing dmin/hsr amplicons harboring sequences from several different chromosomes in seven tumor cell lines, and characterized an unprecedented number of hsr insertion sites. Local chromosome shattering involving a single-step catastrophic event (chromothripsis) was recently proposed to explain clustered chromosomal rearrangements and genomic amplifications in cancer. Our bioinformatics analyses based on the listed criteria to define chromothripsis led us to exclude it as the driving force underlying amplicon genesis in our samples. Instead, the finding of coexisting heterogeneous amplicons, differing in their complexity and chromosome content, in cell lines derived from the same tumor indicated the occurrence of a multi-step evolutionary process in the genesis of dmin/hsr. Our integrated approach allowed us to gather a complete view of the complex chromosome rearrangements occurring within MYC amplicons, suggesting that more than one model may be invoked to explain the origin of dmin/hsr in cancer. Finally, we identified PVT1 as a target of fusion events, confirming its role as breakpoint hotspot in MYC amplification.


Asunto(s)
Cromosomas Humanos/química , Amplificación de Genes , Genes Relacionados con las Neoplasias , Genes myc , Neoplasias/genética , Línea Celular Tumoral , Evolución Molecular , Expresión Génica , Fusión Génica , Genoma Humano , Células HL-60 , Humanos
8.
Genes Chromosomes Cancer ; 54(3): 156-67, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25421174

RESUMEN

Gene amplification is relatively common in tumors. In certain subtypes of sarcoma, it often occurs in the form of ring and/or giant rod-shaped marker (RGM) chromosomes whose mitotic stability is frequently rescued by ectopic novel centromeres (neocentromeres). Little is known about the origin and structure of these RGM chromosomes, including how they arise, their internal organization, and which sequences underlie the neocentromeres. To address these questions, 42 sarcomas with RGM chromosomes were investigated to detect regions prone to double strand breaks and possible functional or structural constraints driving the amplification process. We found nine breakpoint cluster regions potentially involved in the genesis of RGM chromosomes, which turned out to be significantly enriched in poly-pyrimidine traits. Some of the clusters were located close to genes already known to be relevant for sarcomas, thus indicating a potential functional constraint, while others mapped to transcriptionally inactive chromatin domains enriched in heterochromatic sites. Of note, five neocentromeres were identified after analyzing 13 of the cases by fluorescent in situ hybridization. ChIP-on-chip analysis with antibodies against the centromeric protein CENP-A showed that they were a patchwork of small genomic segments derived from different chromosomes, likely joint to form a contiguous sequence during the amplification process.


Asunto(s)
Puntos de Rotura del Cromosoma , Cromosomas en Anillo , Sarcoma/genética , Centrómero/genética , Epigénesis Genética , Amplificación de Genes/genética , Humanos , Hibridación Fluorescente in Situ , Sarcoma/ultraestructura
9.
Genome Res ; 22(12): 2520-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22892276

RESUMEN

Chromosome rearrangements in small apes are up to 20 times more frequent than in most mammals. Because of their complexity, the full extent of chromosome evolution in these hominoids is not yet fully documented. However, previous work with array painting, BAC-FISH, and selective sequencing in two of the four karyomorphs has shown that high-resolution methods can precisely define chromosome breakpoints and map the complex flow of evolutionary chromosome rearrangements. Here we use these tools to precisely define the rearrangements that have occurred in the remaining two karyomorphs, genera Symphalangus (2n = 50) and Hoolock (2n = 38). This research provides the most comprehensive insight into the evolutionary origins of chromosome rearrangements involved in transforming small apes genome. Bioinformatics analyses of the human-gibbon synteny breakpoints revealed association with transposable elements and segmental duplications, providing some insight into the mechanisms that might have promoted rearrangements in small apes. In the near future, the comparison of gibbon genome sequences will provide novel insights to test hypotheses concerning the mechanisms of chromosome evolution. The precise definition of synteny block boundaries and orientation, chromosomal fusions, and centromere repositioning events presented here will facilitate genome sequence assembly for these close relatives of humans.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas/genética , Análisis Citogenético/métodos , Reordenamiento Génico , Hylobates/genética , Animales , Centrómero/química , Centrómero/genética , Elementos Transponibles de ADN , Bases de Datos Genéticas , Evolución Molecular , Femenino , Humanos , Hibridación Fluorescente in Situ , Cariotipo , Mutación , Filogenia
10.
Genome Res ; 21(10): 1626-39, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21824994

RESUMEN

Copy number variants (CNVs) are increasingly acknowledged as an important source of evolutionary novelties in the human lineage. However, our understanding of their significance is still hindered by the lack of primate CNV data. We performed intraspecific comparative genomic hybridizations to identify loci harboring copy number variants in each of the four great apes: bonobos, chimpanzees, gorillas, and orangutans. For the first time, we could analyze differences in CNV location and frequency in these four species, and compare them with human CNVs and primate segmental duplication (SD) maps. In addition, for bonobo and gorilla, patterns of CNV and nucleotide diversity were studied in the same individuals. We show that CNVs have been subject to different selective pressures in different lineages. Evidence for purifying selection is stronger in gorilla CNVs overlapping genes, while positive selection appears to have driven the fixation of structural variants in the orangutan lineage. In contrast, chimpanzees and bonobos present high levels of common structural polymorphism, which is indicative of relaxed purifying selection together with the higher mutation rates induced by the known burst of segmental duplication in the ancestor of the African apes. Indeed, the impact of the duplication burst is noticeable by the fact that bonobo and chimpanzee share more CNVs with gorilla than expected. Finally, we identified a number of interesting genomic regions that present high-frequency CNVs in all great apes, while containing only very rare or even pathogenic structural variants in humans.


Asunto(s)
Variaciones en el Número de Copia de ADN , Gorilla gorilla/genética , Pan paniscus/genética , Pan troglodytes/genética , Pongo/genética , Animales , Estructuras Cromosómicas , Hibridación Genómica Comparativa , Humanos , Filogenia , Polimorfismo Genético , Duplicaciones Segmentarias en el Genoma
11.
Genomics ; 102(4): 288-95, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23648727

RESUMEN

An Evolutionary Neo-Centromere (ENC) is a centromere that emerged in an ectopic region of a chromosome during evolution. It is thought that the old centromere must be inactivated because dicentric chromosomes are not viable. The aim of the present study was to investigate whether 3D arrangement in the interphase nucleus of the novel and old centromeric domains was affected by the repositioning event. The data we present here strongly indicate that the ENC phenomenon does not affect the 3D location of either novel or old centromeres. Very likely, other features, such as gene density, rather than the newly acquired or lost functions, define positioning in the nucleus.


Asunto(s)
Centrómero/genética , Centrómero/ultraestructura , Evolución Molecular , Filogenia , Primates/genética , Animales , Atelinae/genética , Evolución Biológica , Línea Celular , Núcleo Celular/genética , Núcleo Celular/fisiología , Cromosomas , Genoma , Gorilla gorilla/genética , Humanos , Hibridación Fluorescente in Situ , Interfase/genética , Macaca nemestrina/genética , Pongo pygmaeus/genética
12.
Genome Res ; 20(9): 1198-206, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20631050

RESUMEN

Double minutes (dmin) and homogeneously staining regions (hsr) are the cytogenetic hallmarks of genomic amplification in cancer. Different mechanisms have been proposed to explain their genesis. Recently, our group showed that the MYC-containing dmin in leukemia cases arise by excision and amplification (episome model). In the present paper we investigated 10 cell lines from solid tumors showing MYCN amplification as dmin or hsr. Particularly revealing results were provided by the two subclones of the neuroblastoma cell line STA-NB-10, one showing dmin-only and the second hsr-only amplification. Both subclones showed a deletion, at 2p24.3, whose extension matched the amplicon extension. Additionally, the amplicon structure of the dmin and hsr forms was identical. This strongly argues that the episome model, already demonstrated in leukemias, applies to solid tumors as well, and that dmin and hsr are two faces of the same coin. The organization of the duplicated segments varied from very simple (no apparent changes from the normal sequence) to very complex. MYCN was always overexpressed (significantly overexpressed in three cases). The fusion junctions, always mediated by nonhomologous end joining, occasionally juxtaposed truncated genes in the same transcriptional orientation. Fusion transcripts involving NBAS (also known as NAG), FAM49A, BC035112 (also known as NCRNA00276), and SMC6 genes were indeed detected, although their role in the context of the tumor is not clear.


Asunto(s)
Amplificación de Genes , Genes myc , Neoplasias/genética , Citogenética , Hibridación Fluorescente in Situ , Cariotipificación , Datos de Secuencia Molecular , Eliminación de Secuencia
13.
Nat Commun ; 13(1): 5609, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153345

RESUMEN

Human centromeres appear as constrictions on mitotic chromosomes and form a platform for kinetochore assembly in mitosis. Biophysical experiments led to a suggestion that repetitive DNA at centromeric regions form a compact scaffold necessary for function, but this was revised when neocentromeres were discovered on non-repetitive DNA. To test whether centromeres have a special chromatin structure we have analysed the architecture of a neocentromere. Centromere repositioning is accompanied by RNA polymerase II recruitment and active transcription to form a decompacted, negatively supercoiled domain enriched in 'open' chromatin fibres. In contrast, centromerisation causes a spreading of repressive epigenetic marks to surrounding regions, delimited by H3K27me3 polycomb boundaries and divergent genes. This flanking domain is transcriptionally silent and partially remodelled to form 'compact' chromatin, similar to satellite-containing DNA sequences, and exhibits genomic instability. We suggest transcription disrupts chromatin to provide a foundation for kinetochore formation whilst compact pericentromeric heterochromatin generates mechanical rigidity.


Asunto(s)
Heterocromatina , Histonas , Centrómero/genética , Cromatina/genética , ADN/genética , ADN Satélite , Heterocromatina/genética , Histonas/genética , Humanos , ARN Polimerasa II/genética
14.
BMC Evol Biol ; 11: 71, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21406099

RESUMEN

BACKGROUND: The Immunoglobulin heavy chain (IgH) 3' Regulatory Region (3'RR), located at the 3' of the constant alpha gene, plays a crucial role in immunoglobulin production. In humans, there are 2 copies of the 3'RR, each composed of 4 main elements: 3 enhancers and a 20 bp tandem repeat. The single mouse 3'RR differs from the two human ones for the presence of 4 more regulative elements with the double copy of one enhancer at the border of a palindromic region. RESULTS: We compared the 3'RR organization in genomes of vertebrates to depict the evolutionary history of the region and highlight its shared features. We found that in the 8 species in which the whole region was included in a fully assembled contig (mouse, rat, dog, rabbit, panda, orangutan, chimpanzee, and human), the shared elements showed synteny and a highly conserved sequence, thus suggesting a strong evolutionary constraint. In these species, the wide 3'RR (~30 kb in human) bears a large palindromic sequence, consisting in two ~3 kb complementary branches spaced by a ~3 kb sequence always including the HS1.2 enhancer. In mouse and rat, HS3 is involved by the palindrome so that one copy of the enhancer is present on each side. A second relevant feature of our present work concerns human polymorphism of the HS1.2 enhancer, associated to immune diseases in our species. We detected a similar polymorphism in all the studied Catarrhini (a primate parvorder). The polymorphism consists of multiple copies of a 40 bp element up to 12 in chimpanzees, 8 in baboons, 6 in macaque, 5 in gibbons, 4 in humans and orangutan, separated by stretches of Cytosine. We show specific binding of this element to nuclear factors. CONCLUSIONS: The nucleotide sequence of the palindrome is not conserved among evolutionary distant species, suggesting pressures for the maintenance of two self-matching regions driving a three-dimensional structure despite of the inter-specific divergence at sequence level. The information about the conservation of the palindromic structure and the settling in primates of the polymorphic feature of HS1.2 show the relevance of these structures in the control and modulation of the Ig production through the formation of possible three-dimensional structures.


Asunto(s)
Elementos de Facilitación Genéticos , Cadenas Pesadas de Inmunoglobulina/genética , Secuencias Invertidas Repetidas , Mamíferos/genética , Animales , Sitios de Unión , Secuencia Conservada , Humanos , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADN , Sintenía
15.
BMC Genomics ; 12: 639, 2011 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-22208360

RESUMEN

BACKGROUND: The sequencing of the cow genome was recently published (Btau_4.0 assembly). A second, alternate cow genome assembly (UMD2), based on the same raw sequence data, was also published. The two assemblies have been subsequently updated to Btau_4.2 and UMD3.1, respectively. RESULTS: We compared the Btau_4.2 and UMD3.1 alternate assemblies. Inconsistencies were grouped into three main categories: (i) DNA segments showing almost coincidental chromosomal mapping but discordant orientation (inversions); (ii) DNA segments showing a discordant map position along the same chromosome; and (iii) sequences present in one chromosomal assembly but absent in the corresponding chromosome of the other assembly. The latter category mainly consisted of large amounts of scaffolds that were unassigned in Btau_4.2 but successfully mapped in UMD3.1. We sampled 70 inconsistencies and identified appropriate cow BACs for each of them. These clones were then utilized in FISH experiments on cow metaphase or interphase nuclei in order to disambiguate the discrepancies. In almost all instances the FISH results agreed with the UMD3.1 assembly. Occasionally, however, the mapping data of both assemblies were discordant with the FISH results. CONCLUSIONS: Our work demonstrates how FISH, which is assembly independent, can be efficiently used to solve assembly problems frequently encountered using the shotgun approach.


Asunto(s)
Cromosomas Artificiales Bacterianos , Hibridación Fluorescente in Situ , Animales , Bovinos , Mapeo Cromosómico
17.
Nature ; 437(7055): 88-93, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16136132

RESUMEN

We present a global comparison of differences in content of segmental duplication between human and chimpanzee, and determine that 33% of human duplications (> 94% sequence identity) are not duplicated in chimpanzee, including some human disease-causing duplications. Combining experimental and computational approaches, we estimate a genomic duplication rate of 4-5 megabases per million years since divergence. These changes have resulted in gene expression differences between the species. In terms of numbers of base pairs affected, we determine that de novo duplication has contributed most significantly to differences between the species, followed by deletion of ancestral duplications. Post-speciation gene conversion accounts for less than 10% of recent segmental duplication. Chimpanzee-specific hyperexpansion (> 100 copies) of particular segments of DNA have resulted in marked quantitative differences and alterations in the genome landscape between chimpanzee and human. Almost all of the most extreme differences relate to changes in chromosome structure, including the emergence of African great ape subterminal heterochromatin. Nevertheless, base per base, large segmental duplication events have had a greater impact (2.7%) in altering the genomic landscape of these two species than single-base-pair substitution (1.2%).


Asunto(s)
Evolución Molecular , Duplicación de Gen , Genoma Humano , Genómica , Pan troglodytes/genética , Animales , Cromosomas de los Mamíferos/genética , Biología Computacional , Conversión Génica , Humanos , Especificidad de la Especie , Factores de Tiempo
18.
Front Genet ; 12: 706641, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335701

RESUMEN

Segmental duplications or low copy repeats (LCRs) constitute duplicated regions interspersed in the human genome, currently neglected in standard analyses due to their extreme complexity. Recent functional studies have indicated the potential of genes within LCRs in synaptogenesis, neuronal migration, and neocortical expansion in the human lineage. One of the regions with the highest proportion of duplicated sequence is the 22q11.2 locus, carrying eight LCRs (LCR22-A until LCR22-H), and rearrangements between them cause the 22q11.2 deletion syndrome. The LCR22-A block was recently reported to be hypervariable in the human population. It remains unknown whether this variability also exists in non-human primates, since research is strongly hampered by the presence of sequence gaps in the human and non-human primate reference genomes. To chart the LCR22 haplotypes and the associated inter- and intra-species variability, we de novo assembled the region in non-human primates by a combination of optical mapping techniques. A minimal and likely ancient haplotype is present in the chimpanzee, bonobo, and rhesus monkey without intra-species variation. In addition, the optical maps identified assembly errors and closed gaps in the orthologous chromosome 22 reference sequences. These findings indicate the LCR22 expansion to be unique to the human population, which might indicate involvement of the region in human evolution and adaptation. Those maps will enable LCR22-specific functional studies and investigate potential associations with the phenotypic variability in the 22q11.2 deletion syndrome.

19.
J Neurosci ; 29(19): 6296-307, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19439607

RESUMEN

Expression of neurosecretion by nerve cells requires the levels of the transcription repressor element-1 silencing transcription factor (REST) to be very low. However, when high-REST clones of PC12 cells, defective of neurosecretion, were fused to other high-REST, non-neurosecretory cells, some neurosecretion was recovered. To clarify the mechanism of this recovery, we fused defective PC12 cells with human lymphocytes. A cytogenetic analysis revealed all hybrid clones that recovered neurosecretion to contain a fragment of chromosome 11 including the gene encoding BHC80, a protein of one of the complexes that mediate REST repression. In these clones, REST levels were as high as in defective PC12, whereas BHC80, localized in the nucleus, was 4- to 5-fold higher. Transient transfection of defective PC12 with various amounts of BHC80 cDNA induced (1) in defective PC12, the reexpression of only neurosecretion mRNAs; (2) in defective PC12 cotransfected with the REST negative construct DNA-binding domain (to attenuate gene repression), the recovery of a weak, but complete neurosecretory phenotype, including dense-core granules and their regulated exocytosis. Chromatin immunoprecipitation and immunodepletion analyses revealed the extensive BHC80 association with REST at the genes of two neurosecretion proteins, chromograninB and SNAP25, however only in the low-REST PC12, whereas in high-REST defective PC12 no association was appreciable. In defective PC12 transfected with BHC80 some association was reestablished. Therefore, the recovery of neurosecretion observed after fusion/transfection of defective PC12 depends on the reciprocal level of BHC80 and REST, with BHC80 working as a negative modulator of REST repression. This role appears of possible cell physiological and pathological importance.


Asunto(s)
Histona Desacetilasas/metabolismo , Neurosecreción/fisiología , Proteínas Represoras/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Cromogranina B/metabolismo , ADN Complementario/metabolismo , Histona Desacetilasas/genética , Humanos , Linfocitos , Células PC12 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Proteína 25 Asociada a Sinaptosomas/metabolismo , Transfección
20.
Mol Cancer ; 9: 120, 2010 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-20500819

RESUMEN

BACKGROUND: The t(9;22)(q34;q11), generating the Philadelphia (Ph) chromosome, is found in more than 90% of patients with chronic myeloid leukemia (CML). As a result of the translocation, the 3' portion of the ABL1 oncogene is transposed from 9q34 to the 5' portion of the BCR gene on chromosome 22 to form the BCR/ABL1 fusion gene. At diagnosis, in 5-10% of CML patients the Ph chromosome is derived from variant translocations other than the standard t(9;22). RESULTS: We report a molecular cytogenetic study of 452 consecutive CML patients at diagnosis, that revealed 50 cases identifying three main subgroups: i) cases with variant chromosomal rearrangements other than the classic t(9;22)(q34;q11) (9.5%); ii) cases with cryptic insertions of ABL1 into BCR, or vice versa (1.3%); iii) cases bearing additional chromosomal rearrangements concomitant to the t(9;22) (1.1%). For each cytogenetic group, the mechanism at the basis of the rearrangement is discussed.All breakpoints on other chromosomes involved in variant t(9;22) and in additional rearrangements have been characterized for the first time by Fluorescence In Situ Hybridization (FISH) experiments and bioinformatic analyses. This study revealed a high content of Alu repeats, genes density, GC frequency, and miRNAs in the great majority of the analyzed breakpoints. CONCLUSIONS: Taken together with literature data about CML with variant t(9;22), our findings identified several new cytogenetic breakpoints as hotspots for recombination, demonstrating that the involvement of chromosomes other than 9 and 22 is not a random event but could depend on specific genomic features. The presence of several genes and/or miRNAs at the identified breakpoints suggests their potential involvement in the CML pathogenesis.


Asunto(s)
Puntos de Rotura del Cromosoma , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Translocación Genética , Antineoplásicos/uso terapéutico , Benzamidas , Cromosomas Humanos Par 22/genética , Cromosomas Humanos Par 9/genética , Dasatinib , Proteínas de Fusión bcr-abl/genética , Humanos , Mesilato de Imatinib , Hibridación Fluorescente in Situ , Interferón-alfa/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Piperazinas/uso terapéutico , Pirimidinas/uso terapéutico , Tiazoles/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA