Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain ; 144(5): 1565-1575, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33824991

RESUMEN

Despite epidemiological and genetic data linking semantic dementia to inflammation, the topography of neuroinflammation in semantic dementia, also known as the semantic variant of primary progressive aphasia, remains unclear. The pathology starts at the tip of the left temporal lobe where, in addition to cortical atrophy, a strong signal appears with the tau PET tracer 18F-flortaucipir, even though the disease is not typically associated with tau but with TDP-43 protein aggregates. Here, we characterized the topography of inflammation in semantic variant primary progressive aphasia using high-resolution PET and the tracer 11C-PBR28 as a marker of microglial activation. We also tested the hypothesis that inflammation, by providing non-specific binding targets, could explain the 18F-flortaucipir signal in semantic variant primary progressive aphasia. Eight amyloid-PET-negative patients with semantic variant primary progressive aphasia underwent 11C-PBR28 and 18F-flortaucipir PET. Healthy controls underwent 11C-PBR28 PET (n = 12) or 18F-flortaucipir PET (n = 12). Inflammation in PET with 11C-PBR28 was analysed using Logan graphical analysis with a metabolite-corrected arterial input function. 18F-flortaucipir standardized uptake value ratios were calculated using the cerebellum as the reference region. Since monoamine oxidase B receptors are expressed by astrocytes in affected tissue, selegiline was administered to one patient with semantic variant primary progressive aphasia before repeating 18F-flortaucipir scanning to test whether monoamine oxidase B inhibition blocked flortaucipir binding, which it did not. While 11C-PBR28 uptake was mostly cortical, 18F-flortaucipir uptake was greatest in the white matter. The uptake of both tracers was increased in the left temporal lobe and in the right temporal pole, as well as in regions adjoining the left temporal pole such as insula and orbitofrontal cortex. However, peak uptake of 18F-flortaucipir localized to the left temporal pole, the epicentre of pathology, while the peak of inflammation 11C-PBR28 uptake localized to a more posterior, mid-temporal region and left insula and orbitofrontal cortex, in the periphery of the damage core. Neuroinflammation, greatest in the areas of progression of the pathological process in semantic variant primary progressive aphasia, should be further studied as a possible therapeutic target to slow disease progression.


Asunto(s)
Afasia Progresiva Primaria/patología , Encéfalo/patología , Inflamación/patología , Anciano , Afasia Progresiva Primaria/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Progresión de la Enfermedad , Femenino , Humanos , Inflamación/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos
2.
Brain Commun ; 4(5): fcac216, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092303

RESUMEN

Neuroimaging in the preclinical phase of Alzheimer's disease provides information crucial to early intervention, particularly in people with a high genetic risk. Metabolic network modularity, recently applied to the study of dementia, is increased in Alzheimer's disease patients compared with controls, but network modularity in cognitively unimpaired elderly with various risks of developing Alzheimer's disease needs to be determined. Based on their 5-year cognitive progression, we stratified 117 cognitively normal participants (78.3 ± 4.0 years of age, 52 women) into three age-matched groups, each with a different level of risk for Alzheimer's disease. From their fluorodeoxyglucose PET we constructed metabolic networks, evaluated their modular structures using the Louvain algorithm, and compared them between risk groups. As the risk for Alzheimer's disease increased, the metabolic connections among brain regions weakened and became more modular, indicating network fragmentation and functional impairment of the brain. We then set out to determine the correlation between regional brain metabolism, particularly in the modules derived from the previous analysis, and the regional expression of Alzheimer-risk genes in the brain, obtained from the Allen Human Brain Atlas. In all risk groups of this elderly population, the regional brain expression of most Alzheimer-risk genes showed a strong correlation with brain metabolism, particularly in the module that corresponded to regions of the brain that are affected earliest and most severely in Alzheimer's disease. Among the genes, APOE and CD33 showed the strongest negative correlation and SORL1 showed the strongest positive correlation with brain metabolism. The Pearson correlation coefficients remained significant when contrasted against a null-hypothesis distribution of correlation coefficients across the whole transcriptome of 20 736 genes (SORL1: P = 0.0130; CD33, P = 0.0136; APOE: P = 0.0093). The strong regional correlation between Alzheimer-related gene expression in the brain and brain metabolism in older adults highlights the role of brain metabolism in the genesis of dementia.

3.
J Nucl Med ; 61(2): 263-269, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31350322

RESUMEN

Although abnormally folded tau protein has been found to self-propagate from neuron to connected neuron, similar propagation through human brain networks has not been fully documented. We studied tau propagation in the left hemispheric syntactic network, which comprises an anterior frontal node and a posterior temporal node connected by the white matter of the left arcuate fasciculus. This network is affected in the nonfluent variant of primary progressive aphasia, a neurodegenerative disorder with tau accumulation. Methods: Eight patients with the nonfluent variant of primary progressive aphasia (age, 67.0 ± 7.4 y; 4 women) and 8 healthy controls (age, 69.6 ± 7.0 y; 4 women) were scanned with 18F-AV-1451 tau PET to determine tau deposition in the brain and with MRI to determine the fractional anisotropy of the arcuate fasciculus. Normal syntactic network characteristics were confirmed with structural MRI diffusion imaging in our healthy controls and with blood oxygenation level-dependent functional imaging in 35 healthy participants from the Alzheimer Disease Neuroimaging Initiative database. Results: Language scores in patients indicated dysfunction of the anterior node. 18F-AV-1451 deposition was greatest in the 2 nodes of the syntactic network. The left arcuate fasciculus had decreased fractional anisotropy, particularly near the anterior node. Normal MRI structural connectivity from an area similar to the one containing tau in the anterior frontal node projected to an area similar to the one containing tau in the patients in the posterior temporal node. Conclusion: Tau accumulation likely started in the more affected anterior node and, at the disease stage at which we studied these patients, appeared as well in the brain region (in the temporal lobe) spatially separate from but most connected with it. The arcuate fasciculus, connecting both of them, was most severely affected anteriorly, as would correspond to a loss of axons from the anterior node. These findings are suggestive of tau propagation from node to connected node in a natural human brain network and support the idea that neurons that wire together die together.


Asunto(s)
Afasia Progresiva Primaria/diagnóstico por imagen , Afasia Progresiva Primaria/metabolismo , Carbolinas , Imagen por Resonancia Magnética , Habla , Proteínas tau/metabolismo , Anciano , Afasia Progresiva Primaria/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Cognición , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA