Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Planta Med ; 90(1): 73-80, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37963569

RESUMEN

Cannabis as a therapeutic agent is increasing in popularity all around the globe, particularly in Western countries, and its potential is now well assessed. On the other hand, each country has its own regulation for the preparation of cannabis macerated oils; in Italy, there are only a few preparation methods allowed. With this work, we aim to perform a stability study of cannabis oils produced with a novel method for the extraction of cannabinoids from cannabis inflorescence. Three different varieties of cannabis were used, with and without the adding of tocopherol acetate as an antioxidant. Cannabinoids were extracted using ethanol at room temperature; then, the solvent was evaporated under reduced pressure and the preparations reconstituted with olive oil. In this work, we assessed the stability of both cannabinoids and terpenes in these formulas over 8 months. Cannabinoid stability was assessed by monitoring the concentrations of THC and CBD, while terpene stability was assessed by monitoring ß-Caryophyllene and α-Humulene concentrations. Stability of the extracts was not influenced by the presence of tocopherol acetate, though refrigeration seems to be detrimental for a long storage of products, especially regarding THC concentrations. The improvements offered by this method reside in the flexibility in controlling the concentration of the extract and the ability to produce highly concentrated oils, alongside the possibility to produce standardized oils despite the variability of the starting plant material.


Asunto(s)
Cannabinoides , Cannabis , Alucinógenos , Marihuana Medicinal , Marihuana Medicinal/uso terapéutico , Etanol , alfa-Tocoferol , Extractos Vegetales , Aceite de Oliva , Terpenos
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731842

RESUMEN

(1) Autophagy plays a significant role in development and cell proliferation. This process is mainly accomplished by the LC3 protein, which, after maturation, builds the nascent autophagosomes. The inhibition of LC3 maturation results in the interference of autophagy activation. (2) In this study, starting from the structure of a known LC3B binder (LIR2-RavZ peptide), we identified new LC3B ligands by applying an in silico drug design strategy. The most promising peptides were synthesized, biophysically assayed, and biologically evaluated to ascertain their potential antiproliferative activity on five humans cell lines. (3) A cyclic peptide (named Pep6), endowed with high conformational stability (due to the presence of a disulfide bridge), displayed a Kd value on LC3B in the nanomolar range. Assays accomplished on PC3, MCF-7, and A549 cancer cell lines proved that Pep6 exhibited cytotoxic effects comparable to those of the peptide LIR2-RavZ, a reference LC3B ligand. Furthermore, it was ineffective on both normal prostatic epithelium PNT2 and autophagy-defective prostate cancer DU145 cells. (4) Pep6 can be considered a new autophagy inhibitor that can be employed as a pharmacological tool or even as a template for the rational design of new small molecules endowed with autophagy inhibitory activity.


Asunto(s)
Autofagia , Diseño de Fármacos , Péptidos Cíclicos , Humanos , Autofagia/efectos de los fármacos , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proteínas Asociadas a Microtúbulos/metabolismo , Simulación del Acoplamiento Molecular , Células A549 , Células MCF-7
3.
Glycobiology ; 33(2): 88-94, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36504340

RESUMEN

Glucosylceramide synthase (UGCG) is a key enzyme in the biosynthesis of glycosphingolipids and its activity is related to the resistance to anticancer drugs and is involved in the derangement of metabolism in various diseases. Moreover, UGCG acts as a major controller of the balanced levels of individual brain sphingolipids that may trigger neurodegeneration in Gaucher disease and in Parkinson disease associated to pathogenic variants in the glucocerebrosidase-encoding gene GBA. We have developed an effective method for determining UGCG activity in vitro using deuterated ceramide as an acceptor, and quantitation of the formed deuterated glucosylceramide by liquid chromatography coupled with tandem mass spectrometry. The method enabled us to determine the kinetic parameters of UGGC and the effect of the inhibitor GZ667161 on the enzyme activity expressed in model cells, as well as to measure UGCG specific activity in human fibroblasts using a simple crude cell homogenate. This novel approach may be useful in determining the actual UGCG activity levels in patient cells and tissues of animal models of diseases, and to study novel drugs targeting glycosphingolipid metabolism.


Asunto(s)
Encéfalo , Glucosilceramidas , Animales , Humanos , Glucosa , Glucosiltransferasas/genética , Uridina Difosfato
4.
Clin Chem Lab Med ; 61(11): 1978-1993, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37302088

RESUMEN

The use of alternative matrices in toxicological analyses has been on the rise in clinical and forensic settings. Oral fluid (OF), as non-invasive fluid, has attracted attention in the field of drug screening, both for therapeutic and forensic purposes, as well as for medical diagnosis, clinical management, on-site (real time) doping and for monitoring environmental exposure to toxic substances. A good correlation between OF and blood is now established for drug concentrations. Therefore, OF might be a potential substitute of blood, especially for long-term surveillance (e.g., therapeutic drugs) or to screen a large number of patients, as well as for the development of salivary point-of-care technologies. In this review, we aimed to summarize and critically evaluate the current literature that focused on the comparison of drugs detection in OF and blood specimens.


Asunto(s)
Saliva , Detección de Abuso de Sustancias , Humanos , Medicina Legal
5.
Molecules ; 28(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36985837

RESUMEN

Boron containing compounds (BCCs) aroused increasing interest in the scientific community due to their wide application as drugs in various fields. In order to design new compounds hopefully endowed with pharmacological activity and also investigate their conformational behavior, the support of computational studies is crucial. Nevertheless, the suitable molecular mechanics parameterization and the force fields needed to perform these simulations are not completely available for this class of molecules. In this paper, Amber force field parameters for phenyl-, benzyl-, benzylamino-, and methylamino-boronates, a group of boron-containing compounds involved in different branches of the medicinal chemistry, were created. The robustness of the obtained data was confirmed through molecular dynamics simulations on ligand/ß-lactamases covalent complexes. The ligand torsional angles, populated over the trajectory frames, were confirmed by values found in the ligand geometries, located through optimizations at the DFT/B3LYP/6-31g(d) level, using water as a solvent. In summary, this study successfully provided a library of parameters, opening the possibility to perform molecular dynamics simulations of this class of boron-containing compounds.

6.
Molecules ; 28(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903597

RESUMEN

The COVID-19 pandemic has given a strong impetus to the search for antivirals active on SARS-associated coronaviruses. Over these years, numerous vaccines have been developed and many of these are effective and clinically available. Similarly, small molecules and monoclonal antibodies have also been approved by the FDA and EMA for the treatment of SARS-CoV-2 infection in patients who could develop the severe form of COVID-19. Among the available therapeutic tools, the small molecule nirmatrelvir was approved in 2021. It is a drug capable of binding to the Mpro protease, an enzyme encoded by the viral genome and essential for viral intracellular replication. In this work, by virtual screening of a focused library of ß-amido boronic acids, we have designed and synthesized a focused library of compounds. All of them were biophysically tested by microscale thermophoresis, attaining encouraging results. Moreover, they also displayed Mpro protease inhibitory activity, as demonstrated by performing enzymatic assays. We are confident that this study will pave the way for the design of new drugs potentially useful for the treatment of SARS-CoV-2 viral infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Pandemias , Inhibidores de Proteasas/química , Antivirales/farmacología , Simulación del Acoplamiento Molecular
7.
Molecules ; 28(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36838621

RESUMEN

The management of food and food-related wastes represents a growing global issue, as they are hard to recycle and dispose of. Foremost, waste can serve as an important source of biomasses. Particularly, fat-enriched biomasses are receiving more and more attention for their role in the manufacturing of biofuels. Nonetheless, many biomasses have been set aside over the years. Wool wax, also known as lanolin, has a huge potential for becoming a source of typical and atypical fatty acids. The main aim of this work was to evaluate and assess a protocol for the fractioning of fatty acids from lanolin, a natural by-product of the shearing of sheep, alongside the design of a new and rapid quantitative GC-MS method for the derivatization of free fatty acids in fat mixtures, using MethElute™. As the acid portion of lanolin is characterized by the presence of both aliphatic and hydroxylated fatty acids, we also evaluated a procedure for the parting of these two species, by using NMR spectroscopy, benefitting of the different solubilities of the components in organic solvents. At last, we evaluated and quantified the fatty acids and the α-hydroxy fatty acids present in each attained portion, employing both analytical and synthetic standards. The performed analyses, both qualitative and quantitative, showed a good performance in the parting of the different acid components, and GC-MS allowed to speculate that the majority of α-hydroxylated fatty acids is formed of linear saturated carbon chains, while the totality of properly said fatty acids has a much more complex profile.


Asunto(s)
Ácidos Grasos , Lanolina , Animales , Ovinos , Cromatografía de Gases y Espectrometría de Masas/métodos , Lanolina/química , Espectroscopía de Protones por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Ácidos Carboxílicos
8.
Int J Mol Sci ; 23(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35563459

RESUMEN

(1) Background: Disfunctions in autophagy machinery have been identified in various conditions, including neurodegenerative diseases, cancer, and inflammation. Among mammalian autophagy proteins, the Atg8 family member GABARAP has been shown to be greatly involved in the autophagy process of prostate cancer cells, supporting the idea that GABARAP inhibitors could be valuable tools to fight the progression of tumors. (2) Methods: In this paper, starting from the X-ray crystal structure of GABARAP in a complex with an AnkirinB-LIR domain, we identify two new peptides by applying in silico drug design techniques. The two ligands are synthesized, biophysically assayed, and biologically evaluated to ascertain their potential anticancer profile. (3) Results: Two cyclic peptides (WC8 and WC10) displayed promising biological activity, high conformational stability (due to the presence of disulfide bridges), and Kd values in the low micromolar range. The anticancer assays, performed on PC-3 cells, proved that both peptides exhibit antiproliferative effects comparable to those of peptide K1, a known GABARAP inhibitor. (4) Conclusions: WC8 and WC10 can be considered new GABARAP inhibitors to be employed as pharmacological tools or even templates for the rational design of new small molecules.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Proteínas Asociadas a Microtúbulos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Mamíferos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Péptidos/química , Péptidos Cíclicos/farmacología
9.
Int J Mol Sci ; 21(9)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349258

RESUMEN

Lipids are apolar small molecules known not only as components of cell membranes but also, in recent literature, as modulators of different biological functions. Herein, we focused on the bioactive lipids that can influence the immune responses and inflammatory processes regulating vascular hyperreactivity, pain, leukocyte trafficking, and clearance. In the case of excessive pro-inflammatory lipid activity, these lipids also contribute to the transition from acute to chronic inflammation. Based on their biochemical function, these lipids can be divided into different families, including eicosanoids, specialized pro-resolving mediators, lysoglycerophospholipids, sphingolipids, and endocannabinoids. These bioactive lipids are involved in all phases of the inflammatory process and the pathophysiology of different chronic autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, type-1 diabetes, and systemic lupus erythematosus.


Asunto(s)
Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/metabolismo , Susceptibilidad a Enfermedades , Inflamación/etiología , Inflamación/metabolismo , Metabolismo de los Lípidos , Animales , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/terapia , Biomarcadores , Biotecnología , Manejo de la Enfermedad , Humanos , Inflamación/diagnóstico , Inflamación/terapia , Redes y Vías Metabólicas
10.
Molecules ; 25(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32629796

RESUMEN

The feasibility of the use of two lipid sources and their impact on the cannabinoid profile, terpene fingerprint, and degradation products in medical cannabis oil preparations during 3 months of refrigerated storage time were investigated. LCHRMS-Orbitrap® and HS-SPME coupled to GC-MS for the investigation of targeted and untargeted cannabinoids, terpenes, and lipid degradation products in Bedrocan® and Bediol® macerated oils were used as analytical approaches. As regards the cannabinoid trend during 90 days of storage, there were no differences between PhEur-grade olive oil (OOPH) and medium-chain triglycerides oil (MCT oil) coupled to a good stability of preparations for the first 60 days both in Bedrocan® and Bediol® oils. MCT lipid source extracted a significant concentration of terpenes compared to olive oil. Terpenes showed a different scenario since MCT oil displayed the strongest extraction capacity and conservation trend of all compounds during the shelf life. Terpenes remained stable throughout the entire storage period in MCT formulations while a significant decrease after 15 and 30 days in Bediol® and Bedrocan® was observed in olive oil. Therefore, MCT oil could be considered a more suitable lipid source compared to olive oil involved in the extraction of medical cannabis for magistral preparations.


Asunto(s)
Cannabinoides/análisis , Cannabis/química , Marihuana Medicinal/análisis , Extractos Vegetales/química , Aceites de Plantas/química , Triglicéridos/química , Marihuana Medicinal/química
11.
Chem Biodivers ; 16(6): e1900097, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30942951

RESUMEN

New N-substituted-2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivatives were synthesized employing a convenient one-pot three-component method and their structures were characterized by 1 H-NMR and single crystal X-ray diffraction analysis. All the synthesized compounds were in vitro screened for antimicrobial activity against Gram-positive (Sarcina lutea) and Gram-negative bacteria (Escherichia coli). In this work, we introduced a chiral residue on the tetrahydropyridine nitrogen, the hitherto the less investigated position on this pharmacophore in order to explore the effect. The antibacterial results showed that the synthesized compounds were active only against Gram-positive bacteria and the (R)-enantiomers displayed a greater antimicrobial potency than their (S)-counterparts. The structure-activity relationship here investigated may provide some interesting clues for future development of tetrahydrothienopyridine derivatives with higher antimicrobial activity.


Asunto(s)
Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Cristalografía por Rayos X , Hongos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Piridinas/síntesis química , Piridinas/química , Piridinas/farmacología , Estereoisomerismo , Relación Estructura-Actividad
12.
Molecules ; 24(3)2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699941

RESUMEN

Herein, we reported a detailed profiling of soluble components of two fermented varieties of Chinese green tea, namely raw and ripe pu-erh. The identification and quantification of the main components was carried out by means of mass spectrometry and UV spectroscopy, after chromatographic separation. The antioxidant capacity towards different radical species, the anti-microbial and the enzyme inhibition activities of the extracts were then correlated to their main constituents. Despite a superimposable qualitative composition, a similar caffeine content, and similar enzyme inhibition and antimicrobial activities, raw pu-erh tea extract had a better antioxidant capacity owing to its higher polyphenol content. However, the activity of raw pu-erh tea seems not to justify its higher production costs and ripe variety appears to be a valid and low-cost alternative for the preparation of products with antioxidant or antimicrobial properties.


Asunto(s)
Antioxidantes/química , Camellia sinensis/química , Cromatografía Liquida/métodos , Extractos Vegetales/química , Polifenoles/química
13.
Amino Acids ; 50(12): 1759-1767, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30225663

RESUMEN

Amino acid benzyl esters are very useful chiral synthons, whose enantiomeric purity needs to be carefully verified because of their susceptibility to easy racemization. Alternative to chiral HPLC, 1H NMR in the presence of a chiral solvating agent (CSA) can allow a more rapid and acceptably accurate determination of the enantiomeric composition, if explicit spectral non-equivalence of one or more protons of the analyte enantiomers is found. Here, we have studied the enantiodiscrimination of 13 amino acid benzyl esters by 1H NMR in the presence of (R)-Mosher acid and in different solvents proving that, for 5 of them (Ala, Pro, Glu, Met, Ser), efficient enantiodifferentiation can be achieved and ≤ 98% enatiomeric excesses accurately determined. Generally, as expectable, the best enantiodifferentiated proton was that on the amino acid stereogenic α-carbon, but also the spectral non-equivalence of methyl protons and of protons on the ß-carbon and on the benzylic carbon could be exploited to distinguish the two enantiomers and to quantify the minor one. Structural feature favoring the amino acid ester enantiodiscrimination by the CSA seems to be low sterical hindrance at the amino acid ß-carbon.


Asunto(s)
Aminoácidos/química , Ésteres/química , Espectroscopía de Resonancia Magnética , Fenilacetatos/química , Estereoisomerismo
14.
J Nat Prod ; 81(10): 2212-2221, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30360625

RESUMEN

Fifteen new multifunctional conjugates were designed and synthesized by chemically linking the steroidal framework of natural occurring γ-oryzanol and γ-oryzanol-derived phytosterols to a wide range of bioactive natural compounds (fatty acids, phenolic acids, amino acids, lipoic acid, retinoic acid, curcumin, and resveratrol). Starting from γ-oryzanol, which is the main component of rice bran oil, this study was aimed at assessing if the conjugation strategy might enhance some γ-oryzanol bioactivities. The antioxidant activity was evaluated through three different mechanisms, namely, DPPH-scavenging activity, metal-chelating activity, and ß-carotene-bleaching inhibition. Measurement of the in vitro cell growth inhibitory effects on three different human cancer cellular lines was also carried out, and the potential hypocholesterolemic effect was studied. Compounds 10 and 15 displayed an improved antioxidant activity, with respect to that of γ-oryzanol. Compounds 2, 6, and 12 exerted an antiproliferative activity in the low micromolar range against HeLa and DAOY cells (GI50 < 10 µM). As for the claimed hypocholesterolemic effect of γ-oryzanol, none of the synthesized compounds inhibited the 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis.


Asunto(s)
Anticolesterolemiantes/síntesis química , Anticolesterolemiantes/farmacología , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/síntesis química , Antioxidantes/farmacología , Fenilpropionatos/química , Fenilpropionatos/farmacología , Fitosteroles/química , Fitosteroles/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quelantes/química , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/farmacología , Humanos , Estructura Molecular , Oryza/química , Aceites de Plantas/química , beta Caroteno/química
15.
Planta Med ; 84(4): 242-249, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29202510

RESUMEN

Recently, an increasing number of pharmacists had to supply medicinal products based on Cannabis sativa L. (Cannabaceae), prescribed by physicians to individual patients. Cannabis olive oil preparation is the first choice as a concentrated extract of cannabinoids, even though standardized operative conditions for obtaining it are still not available. In this work, the impact of temperature and extraction time on the concentration of active principles was studied to harmonize the different compounding methods, optimize the extraction process, and reduce the variability among preparations. Moreover, starting from the cannabis inflorescence, the effect of temperature on tetrahydrocannabinolic acid decarboxylation was evaluated. For the analysis, a GC/MS method, as suggested by the Italian Ministry of Health, and a GC/flame ionization detection method were developed, validated, and compared.


Asunto(s)
Cannabinoides/análisis , Cannabis/química , Aceite de Oliva/química , Extractos Vegetales/química , Cannabis/anatomía & histología , Cannabis/ultraestructura , Ionización de Llama/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Calor , Microscopía , Microscopía Electrónica de Rastreo , Aceite de Oliva/uso terapéutico , Hojas de la Planta/anatomía & histología , Hojas de la Planta/química , Hojas de la Planta/ultraestructura
16.
Pharmaceutics ; 16(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38675167

RESUMEN

Oral colon delivery systems based on a dual targeting strategy, harnessing time- and microbiota-dependent release mechanisms, were designed in the form of a drug-containing core, a swellable/biodegradable polysaccharide inner layer and a gastroresistant outer film. High-methoxyl pectin was employed as the functional coating polymer and was applied by spray-coating or powder-layering. Stratification of pectin powder required the use of low-viscosity hydroxypropyl methylcellulose in water solution as the binder. These coatings exhibited rough surfaces and higher thicknesses than the spray-coated ones. Using a finer powder fraction improved the process outcome, coating quality and inherent barrier properties in aqueous fluids. Pulsatile release profiles and reproducible lag phases of the pursued duration were obtained from systems manufactured by both techniques. This performance was confirmed by double-coated systems, provided with a Kollicoat® MAE outer film that yielded resistance in the acidic stage of the test. Moreover, HM pectin-based coatings manufactured by powder-layering, tested in the presence of bacteria from a Crohn's disease patient, showed earlier release, supporting the role of microbial degradation as a triggering mechanism at the target site. The overall results highlighted viable coating options and in vitro release characteristics, sparking new interest in naturally occurring pectin as a coating agent for oral colon delivery.

17.
Plants (Basel) ; 13(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38891346

RESUMEN

Khat leaves, indigenous to eastern Africa, have been chewed for centuries for their stimulant effects, attributed to alkaloids such as cathinone and cathine. Although associated with gastric disorders like gastritis and gastro-oesophageal reflux disease, the underlying molecular mechanisms remain unclear. This study aimed to examine the morpho-anatomy of khat leaves using light microscopy and histochemistry and to assess the effects of leaf extracts and alkaloids on human gastric epithelial cells (GES-1). The study identified specific cells in the palisade-spongy transition zone as storage sites for psychoactive alkaloids. Leaf extracts were prepared by mimicking the chewing process, including a prolonged salivary phase followed by a gastric phase. Cytotoxicity and cell viability were evaluated using LDH and MTT assays, respectively. Additionally, the impact on IL-8 secretion, a key chemokine in gastric inflammation, was analysed under normal and TNF-α-stimulated conditions. The results showed no increase in cytotoxicity up to 250 µg/mL. However, there was a significant decrease in cell metabolism and a reduction in both basal and TNF-α-induced IL-8 secretion, but cathinone and cathine were inactive. These findings suggest that khat may not directly cause the gastric issues reported in the literature, which would rather be attributed to other confounding factors, highlighting the need for further research to clarify its biological impacts.

19.
Foods ; 12(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628015

RESUMEN

In recent years, there has been growing interest in exploring alternative and innovative delivery systems to improve the efficacy of iron supplements, satisfying iron needs and lowering side effects. To address this issue, this study aimed at demonstrating the advantages of Ferro Supremo formulation (composed of encapsulated iron, vitamins, and micronutrients), in terms of capacity to improve iron intestinal absorption, in comparison with standard FeSO4. Hence, differentiated Caco-2 cells have been used for assessing the in vitro bioavailability and safety of FS and FeSO4. MTT experiments demonstrated that both FS and FeSO4 are not able to impair the viability of Caco-2 cells. Furthermore, the quantitative and qualitative analysis, conducted by atomic absorption spectrometry and fluorescence determinations, revealed that FS can enter, accumulate in the cytoplasm, and be transported by intestinal cells four times more efficiently than FeSO4. Our findings indicate that this formulation can be considered a valuable and efficiently good choice as food supplements for improving iron deficiency.

20.
Pharmaceutics ; 15(6)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37376205

RESUMEN

Bacterial biofilm is a major contributor to the persistence of infection and the limited efficacy of antibiotics. Antibiofilm molecules that interfere with the biofilm lifestyle offer a valuable tool in fighting bacterial pathogens. Ellagic acid (EA) is a natural polyphenol that has shown attractive antibiofilm properties. However, its precise antibiofilm mode of action remains unknown. Experimental evidence links the NADH:quinone oxidoreductase enzyme WrbA to biofilm formation, stress response, and pathogen virulence. Moreover, WrbA has demonstrated interactions with antibiofilm molecules, suggesting its role in redox and biofilm modulation. This work aims to provide mechanistic insights into the antibiofilm mode of action of EA utilizing computational studies, biophysical measurements, enzyme inhibition studies on WrbA, and biofilm and reactive oxygen species assays exploiting a WrbA-deprived mutant strain of Escherichia coli. Our research efforts led us to propose that the antibiofilm mode of action of EA stems from its ability to perturb the bacterial redox homeostasis driven by WrbA. These findings shed new light on the antibiofilm properties of EA and could lead to the development of more effective treatments for biofilm-related infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA