RESUMEN
Wind energy production is growing rapidly worldwide in an effort to reduce greenhouse gas emissions. However, wind energy production is not environmentally neutral. Negative impacts on volant animals, such as bats, include fatalities at turbines and habitat loss due to land-use change and displacement. Siting turbines away from ecologically sensitive areas and implementing measures to reduce fatalities are critical to protecting bat populations. Restricting turbine operations during periods of high bat activity is the most effective form of mitigation currently available to reduce fatalities. Compensating for habitat loss and offsetting mortality are not often practiced, because meaningful offsets are lacking. Legal frameworks to prevent or mitigate the negative impacts of wind energy on bats are absent in most countries, especially in emerging markets. Therefore, governments and lending institutions are key in reconciling wind energy production with biodiversity goals by requiring sufficient environmental standards for wind energy projects.
RESUMEN
Public health concerns about recent viral epidemics have motivated researchers to seek novel ways to understand pathogen infection in native, wildlife hosts. With its deep history of tools and perspectives for understanding the abundance and distribution of organisms, ecology can shed new light on viral infection dynamics. However, datasets allowing deep explorations of viral communities from an ecological perspective are lacking. We sampled 1086 bats from two, adjacent Puerto Rican caves and tested them for infection by herpesviruses, resulting in 3131 short, viral sequences. Using percent identity of nucleotides and a machine learning algorithm (affinity propagation), we categorized herpesviruses into 43 operational taxonomic units (OTUs) to be used in place of species in subsequent ecological analyses. Herpesvirus metacommunities demonstrated long-tailed rank frequency distributions at all analyzed levels of host organization (i.e., individual, population, and community). Although 13 herpesvirus OTUs were detected in more than one host species, OTUs generally exhibited host specificity by infecting a single core host species at a significantly higher prevalence than in all satellite species combined. We describe the natural history of herpesvirus metacommunities in Puerto Rican bats and suggest that viruses follow the general law that communities comprise few common and many rare species. To guide future efforts in the field of viral ecology, hypotheses are presented regarding mechanisms that contribute to these patterns.
RESUMEN
The term hot cave is used to describe some subterranean chambers in the Neotropics that are characterized by constantly high ambient temperatures generated by the body heat of high densities of certain bat species. Many of these species have limited geographic ranges, and some occur only in the hot-cave environment. In addition to the bats, the stable microclimate and abundant bat guano provides refuge and food for a high diversity of invertebrates. Hot caves have so far been described in the Caribbean and in a few isolated locations from Mexico to Brazil, although there is some evidence that similar caves may be present throughout the tropics. The existing literature suggests these poorly known ecosystems, with their unique combination of geomorphology and bat-generated microclimate, are particularly sensitive to disturbance and face multiple threats from urbanization, agricultural development, mining, and tourism.
Asunto(s)
Biodiversidad , Cuevas , Conservación de los Recursos Naturales , Microclima , Adaptación Fisiológica , Américas , Animales , Quirópteros/fisiología , Calor , Invertebrados/fisiologíaRESUMEN
Urbanization and natural disasters can disrupt landscape connectivity, effectively isolating populations and increasing the risk of local extirpation particularly in island systems. To understand how fragmentation affects corridors among forested areas, we used circuit theory to model the landscape connectivity of the endemic bat Stenoderma rufum within Puerto Rico. Our models combined species occurrences, land use, habitat suitability, and vegetation cover data that were used either as resistance (land use) or conductance layers (habitat suitability and vegetation cover). Urbanization affected connectivity overall from east to west and underscored protected and rustic areas for the maintenance of forest corridors. Suitable habitat provided a reliable measure of connectivity among potential movement corridors that connected more isolated areas. We found that intense hurricanes that disrupt forest integrity can affect connectivity of suitable habitat. Some of the largest protected areas in the east of Puerto Rico are at an increasing risk of becoming disconnected from more continuous forest patches. Given the increasing rate of urbanization, this pattern could also apply to other vertebrates. Our findings show the importance of maintaining forest integrity, emphasizing the considerable conservation value of rustic areas for the preservation of local biodiversity.
Asunto(s)
Quirópteros , Tormentas Ciclónicas , Ecosistema , Animales , Conservación de los Recursos Naturales , Bosques , Puerto Rico , UrbanizaciónRESUMEN
The purpose of this study was to determine if Puerto Rican bats had previous exposure to rabies virus based on viral neutralizing antibodies. Our results demonstrate that 6.5% of the bats in this study had some exposure to rabies virus. The route of exposure is unknown but may have occurred following interaction with a rabid terrestrial animal or an unidentified bat rabies virus.