Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540573

RESUMEN

Wind energy harvesting technology is one of the most popular power sources for wireless sensor networks. However, given its irregular nature, wind energy availability experiences significant variations and, therefore, wind-powered devices need reliable forecasting models to effectively adjust their energy consumption to the dynamics of energy harvesting. On the other hand, resource-constrained devices with limited hardware capacities (such as sensor nodes) must resort to forecasting schemes of low complexity for their predictions in order to avoid squandering their scarce power and computing capabilities. In this paper, we present a new efficient ARIMA-based forecasting model for predicting wind speed at short-term horizons. The performance results obtained using real data sets show that the proposed ARIMA model can be an excellent choice for wind-powered sensor nodes due to its potential for achieving accurate enough predictions with very low computational burden and memory overhead. In addition, it is very simple to setup, since it can dynamically adapt to varying wind conditions and locations without requiring any particular reconfiguration or previous data training phase for each different scenario.

2.
Sensors (Basel) ; 21(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201485

RESUMEN

The issue of energy balancing in Wireless Sensor Networks is a pivotal one, crucial in their deployment. This problem can be subdivided in three areas: (i) energy conservation techniques, usually implying minimizing the cost of communication at the nodes since it is known that the radio is the biggest consumer of the available energy; (ii) energy-harvesting techniques, converting energy from not full-time available environmental sources and usually storing it; and (iii) energy transfer techniques, sharing energy resources from one node (either specialized or not) to another one. In this article, we survey the main contributions in these three areas and identify the main trending topics in recent research. A discussion and some future directions are also included.


Asunto(s)
Tecnología Inalámbrica , Fenómenos Físicos
3.
Sensors (Basel) ; 20(5)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143294

RESUMEN

Sunlight is one of the most frequently used ambient energy sources for energy harvesting in wireless sensor networks. Although virtually unlimited, solar radiation experiences significant variations depending on the weather, the season, and the time of day, so solar-powered nodes commonly employ solar prediction models to effectively adapt their energy demands to harvesting dynamics. We present in this paper a novel energy prediction model that makes use of the altitude angle of the sun at different times of day to predict future solar energy availability. Unlike most of the state-of-the-art predictors that use past energy observations to make predictions, our model does not require one to maintain local energy harvesting patterns of past days. Performance evaluation shows that our scheme is able to provide accurate predictions for arbitrary forecasting horizons by performing just a few low complexity operations. Moreover, our proposal is extremely simple to set up since it does not require any particular tuning for each different scenario or location.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA