Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(50): e2211536119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36469763

RESUMEN

Understanding where in the cytoplasm mRNAs are translated is increasingly recognized as being as important as knowing the timing and level of protein expression. mRNAs are localized via active motor-driven transport along microtubules (MTs) but the underlying essential factors and dynamic interactions are largely unknown. Using biochemical in vitro reconstitutions with purified mammalian proteins, multicolor TIRF-microscopy, and interaction kinetics measurements, we show that adenomatous polyposis coli (APC) enables kinesin-1- and kinesin-2-based mRNA transport, and that APC is an ideal adaptor for long-range mRNA transport as it forms highly stable complexes with 3'UTR fragments of several neuronal mRNAs (APC-RNPs). The kinesin-1 KIF5A binds and transports several neuronal mRNP components such as FMRP, PURα and mRNA fragments weakly, whereas the transport frequency of the mRNA fragments is significantly increased by APC. APC-RNP-motor complexes can assemble on MTs, generating highly processive mRNA transport events. We further find that end-binding protein 1 (EB1) recruits APC-RNPs to dynamically growing MT ends and APC-RNPs track shrinking MTs, producing MT minus-end-directed RNA motility due to the high dwell times of APC on MTs. Our findings establish APC as a versatile mRNA-kinesin adaptor and a key factor for the assembly and bidirectional movement of neuronal transport mRNPs.


Asunto(s)
Poliposis Adenomatosa del Colon , Cinesinas , Animales , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/metabolismo , ARN Mensajero/metabolismo , Microtúbulos/metabolismo , Mamíferos/genética
2.
Environ Monit Assess ; 195(11): 1395, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906309

RESUMEN

The present study validates the potential of the in vitro H9c2(2-1) cell-based sulforhodamine B (SRB) assay to evaluate the temporal variability of wastewater quality. The impact of effluent disposal on water quality and the efficiency of the wastewater treatment process were also assessed. To correlate standard analytical method results with in vitro results, a total of 16 physicochemical parameters, such as nutrients, pH, chemical oxygen demand, total suspended solids and metals, were determined in both raw and treated wastewater samples. Results revealed that the H9c2(2-1) cell-based SRB assay has an enormous potential to evaluate municipal wastewater quality over time and to discriminate influent and effluent toxic characteristics, as well as for water quality monitoring and surveillance of the efficacy of treatment processes. Finally, the gathered results alerted to the impact of phosphates in a biological system, leading us to recommend the selection of this parameter as a potential environmental health indicator.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Monitoreo del Ambiente , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Análisis de la Demanda Biológica de Oxígeno
3.
Physiol Plant ; 173(1): 235-245, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33629743

RESUMEN

Iron (Fe) deficiency chlorosis (IDC) affects the growth of several crops, especially when growing in alkaline soils. The application of synthetic Fe-chelates is one of the most commonly used strategies in IDC amendment, despite their associated negative environmental impacts. In a previous work, the Fe-chelate tris(3-hydroxy-1-(H)-2-methyl-4-pyridinonate) iron(III) [Fe(mpp)3 ] has shown great potential for alleviating IDC in soybean (Glycine max) in the early stages of plant development under hydroponic conditions. Herein, its efficacy was verified under soil conditions in soybean grown from seed to full maturity. Chlorophyll levels, plant growth, root and shoot mineral accumulation (K, Mg, Ca, Na, P, Mn, Zn, Ni, and Co) and FERRITIN expression were accessed at V5 phenological stage. Compared to a commonly used Fe chelate, FeEDDHA, supplementation with [Fe(mpp)3 ] led to a 29% higher relative chlorophyll content, 32% higher root biomass, 36% higher trifoliate Fe concentration, and a twofold increase in leaf FERRITIN gene expression. [Fe(mpp)3 ] supplementation also resulted in increased accumulation of P, K, Zn, and Co. At full maturity, the remaining plants were harvested and [Fe(mpp)3 ] application led to a 32% seed yield increase when compared to FeEDDHA. This is the first report on the use of [Fe(mpp)3 ] under alkaline soil conditions for IDC correction, and we show that its foliar application has a longer-lasting effect than FeEDDHA, induces efficient root responses, and promotes the uptake of other nutrients.


Asunto(s)
Anemia Hipocrómica , Glycine max , Hierro , Raíces de Plantas , Piridonas
4.
Mol Cell Neurosci ; 96: 1-9, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30771505

RESUMEN

Parkinson's disease (PD) is a progressive neurological disorder, mainly characterized by the progressive loss of dopaminergic neurons in the Substantia nigra pars compacta (SNpc) and by the presence of intracellular inclusions, known as Lewy bodies. Despite SNpc being considered the primary affected region in PD, the neuropathological features are confined solely to the nigro-striatal axis. With disease progression other brain regions are also affected, namely the cerebral cortex, although the spreading of the neurologic damage to this region is still not completely unraveled. Tauroursodeoxycholic acid (TUDCA) is an endogenous bile acid that has been shown to have antioxidant properties and to exhibit a neuroprotective effect in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice model of PD. Moreover, TUDCA anti-inflammatory properties have been reported in glial cells, making it a prominent therapeutic agent in PD. Here, we used C57BL/6 mice injected with MPTP in a sub-acute paradigm aiming to investigate if the neurotoxic effects of MPTP could be extended to the cerebral cortex. In parallel, we evaluated the anti-oxidant, neuroprotective and anti-inflammatory effects of TUDCA. The anti-inflammatory mechanisms elicited by TUDCA were further dissected in microglia cells. Our results show that MPTP leads to a decrease of ATP and activated AMP-activated protein kinase levels in mice cortex, and to a transient increase in the expression of antioxidant downstream targets of nuclear factor erythroid 2 related factor 2 (Nrf-2), and parkin. Notably, MPTP increases pro-inflammatory markers, while down-regulating the expression of the anti-inflammatory protein Annexin-A1 (ANXA1). Importantly, we show that TUDCA treatment prevents the deleterious effects of MPTP, sustains increased levels of antioxidant enzymes and parkin, and most of all negatively modulates neuroinflammation and up-regulates ANXA1 expression. Additionally, results from cellular models using microglia corroborate TUDCA modulation of ANXA1 synthesis, linking inhibition of neuroinflammation and neuroprotection by TUDCA.


Asunto(s)
Antiinflamatorios/farmacología , Corteza Cerebral/efectos de los fármacos , Intoxicación por MPTP/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Ácido Tauroquenodesoxicólico/farmacología , Quinasas de la Proteína-Quinasa Activada por el AMP , Adenosina Trifosfato/metabolismo , Animales , Anexina A1/genética , Anexina A1/metabolismo , Antiinflamatorios/uso terapéutico , Línea Celular , Corteza Cerebral/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Proteínas Quinasas/metabolismo , Ácido Tauroquenodesoxicólico/uso terapéutico , Ubiquitina-Proteína Ligasas/metabolismo
5.
Ecotoxicol Environ Saf ; 195: 110465, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32199217

RESUMEN

Complementary studies at different levels of the biological organization are fundamental to fully link environmental exposure to marine benthic dinoflagellate toxins and their effects. In order to contribute to this transdisciplinary evaluation, and for the first time, the present study aims to study the effects of Gambierdiscus excentricus, Ostreopsis cf. ovata, Prorocentrum hoffmannianum and Prorocentrum lima extracts on seven functionally different mammalian cell lines: HEK 293, HepG2, HNDF, H9c2(2-1), MC3T3-E1, Raw 264.7 and SH-SY5Y. All the cell lines presented cell mass decrease in a concentration-dependence of dinoflagellate extracts, exhibiting marked differences in cell toxicity. Gambierdiscus excentricus presented the highest effect, at very low concentrations with EC50,24h (i.e., the concentration that gives half-maximal response after a 24-h exposure) between 1.3 and 13 cells mL-1, followed by O. cf. ovata (EC50,24h between 3.3 and 40 cells mL-1), and Prorocentrum species (P. lima: EC50,24h between 191 and 1027 cells mL-1 and P. hoffmannianum: EC50,24h between 152 and 783 cells mL-1). Cellular specificities were also detected and rat cardiomyoblast H9c2(2-1) cells were in general the most sensitive to dinoflagellate toxic compounds, suggesting that this cell line is an animal-free potential model for dinoflagellate toxin testing. Finally, the sensitivity of cells expressing distinct phenotypes to each dinoflagellate extract exhibited low relation to human poisoning symptoms.


Asunto(s)
Dinoflagelados , Toxinas Marinas/toxicidad , Animales , Línea Celular , Células HEK293 , Células Hep G2 , Humanos , Ratones , Células RAW 264.7 , Ratas
6.
J Environ Sci (China) ; 96: 163-170, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32819690

RESUMEN

The treatment of wastewaters is crucial to maintain the ecological status of receiving waters, and thereby guarantee the protection of aquatic life and human health. Wastewater quality evaluation is conventionally based on physicochemical parameters, but increasing attention has been paid to integrate physicochemical and biological data. Nevertheless, the regulatory use of fish in biological testing methods has been subject to various ethical and cost concerns, and in vitro cell-based assays have thus become an important topic of interest. Hence, the present study intends: (a) to evaluate the efficiency of two different sample pre-concentration techniques (lyophilisation and solid phase extraction) to assess the toxicity of municipal effluents on rat cardiomyoblast H9c2(2-1) cells, and (b) maximizing the use of the effluent sample collected, to estimate the environmental condition of the receiving environment. The gathered results demonstrate that the H9c2(2-1) sulforhodamine B-based assay is an appropriate in vitro method to assess biological effluent toxicity, and the best results were attained by lyophilising the sample as pre-treatment. Due to its response, the H9c2(2-1) cell line might be a possible alternative in vitro model for fish lethal testing to assess the toxicity of municipal effluents. The physicochemical status of the sample suggests a high potential for eutrophication, and iron exceeded the permissible level for wastewater discharge, possibly due to the addition of ferric chloride for wastewater treatment. In general, the levels of carbamazepine and sulfamethoxazole are higher than those reported for other countries, and both surpassed the aquatic protective values for long-term exposure.


Asunto(s)
Contaminantes Químicos del Agua/análisis , Animales , Bioensayo , Monitoreo del Ambiente , Humanos , Miocitos Cardíacos/química , Ratas , Rodaminas , Eliminación de Residuos Líquidos
7.
Exp Cell Res ; 360(1): 55-60, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28232115

RESUMEN

Cholesterol homeostasis greatly impacts neuronal function due to the essential role of this sterol in the brain. The mevalonate (MVA) pathway leads to the synthesis of cholesterol, but also supplies cells with many other intermediary molecules crucial for neuronal function. Compelling evidence point to a model in which neurons shutdown cholesterol synthesis, and rely on a shuttle derived from astrocytes to meet their cholesterol needs. Nevertheless, several reports suggest that neurons maintain the MVA pathway active, even with sustained cholesterol supply by astrocytes. Hence, in this review we focus not on cholesterol production, but rather on the role of the MVA pathway in the synthesis of particular intermediaries, namely isoprenoids, and on their role on neuronal function. Isoprenoids act as anchors for membrane association, after being covalently bound to proteins, such as most of the small guanosine triphosphate-binding proteins, which are critical to neuronal cell function. Based on literature, on our own results, and on the analysis of public transcriptomics databases, we raise the idea that in neurons there is a shift of the MVA pathway towards the non-sterol branch, responsible for isoprenoid synthesis, in detriment to post-squalene branch, and that this is ultimately essential for synaptic activity. Nevertheless new tools that facilitate imaging and the biochemical characterization and quantification of the prenylome in neurons and astrocytes are needed to understand the regulation of isoprenoid production and protein prenylation in the brain, and to analyze its differences on diverse physiological or pathological conditions, such as aging and neurodegenerative states.


Asunto(s)
Colesterol/metabolismo , Ácido Mevalónico/metabolismo , Neuronas/metabolismo , Transducción de Señal , Animales , Humanos , Neuronas/citología
8.
Ecotoxicol Environ Saf ; 150: 224-231, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29288903

RESUMEN

The present study aims to contribute to a better assessment of pesticide environmental and human health (here evaluated in the context of human exposure via food items) risks for the estuarine system by comprehensively studying the spatial and temporal occurrence of the pesticides atrazine, azoxystrobin, bentazon, λ-cyhalothrin, penoxsulam and terbuthylazine in the River Mondego estuary (Portugal). Pesticide quantification was performed in surface water, sediment, macroalgae (Ulva spp., Gracilaria gracilis, Fucus vesiculosus), aquatic plants (Zostera noltii, Spartina maritime, Scirpus maritimus) and bivalves (Scrobicularia plana). Since intense precipitation could promote the runoff of pesticides from the surrounding agricultural fields, a single long-duration flood event was also studied in this estuarine system. Under normal flow conditions, quantified concentrations were determined mostly during summer in agreement with the pesticide application period. Azoxystrobin presented the highest detection frequency and atrazine (an herbicide used globally but banned in the EU) presented the second highest frequency, thus highlighting the need to include legacy pesticides in monitoring programmes. Pesticide concentrations in surface water determined in the present study suggest low risk to estuarine organisms. However, all the pesticides were bioaccumulated by S. plana, leading us to consider that pesticides may not only cause adverse effects on the aquatic organism itself, but should also be an alert for human exposure, for this is an edible species and is considered of economic interest. Concern is also expressed about edible seaweeds, since s-triazine pesticides were found in Ulva spp. and G. gracilis. Acknowledging these concerns, developing and establishing allowable pesticide safety values for edible seaweeds and bivalves is recommended, as well as monitoring bivalve pesticide levels, using the whole animal, as a human health exposure indicator for estuarine systems. During the studied flood event, it appears that no serious pesticide contamination has occurred in the River Mondego estuary.


Asunto(s)
Monitoreo del Ambiente/métodos , Estuarios , Plaguicidas/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Animales , Bivalvos/efectos de los fármacos , Bivalvos/metabolismo , Humanos , Portugal , Medición de Riesgo , Alimentos Marinos/normas
9.
Biochim Biophys Acta ; 1861(12 Pt A): 1911-1920, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27663182

RESUMEN

Dysfunctions in brain cholesterol homeostasis have been extensively related to brain disorders. The major elimination pathway of brain cholesterol is its hydroxylation into 24 (S)-hydroxycholesterol by the cholesterol 24-hydroxylase (CYP46A1). Interestingly, there seems to be an association between CYP46A1 and high-order brain functions, in a sense that increased expression of this hydroxylase improves cognition, while a reduction leads to a poor cognitive performance. Moreover, increasing amount of epidemiological, biochemical and molecular evidence, suggests that CYP46A1 has a role in the pathogenesis or progression of neurodegenerative disorders, in which up-regulation of this enzyme is clearly beneficial. However, the mechanisms underlying these effects are poorly understood, which highlights the importance of studies that further explore the role of CYP46A1 in the central nervous system. In this review we summarize the major findings regarding CYP46A1, and highlight the several recently described pathways modulated by this enzyme from a physiological and pathological perspective, which might account for novel therapeutic strategies for neurodegenerative disorders.


Asunto(s)
Encéfalo/metabolismo , Colesterol 24-Hidroxilasa/metabolismo , Colesterol/metabolismo , Animales , Sistema Nervioso Central/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Regulación hacia Arriba/fisiología
10.
Biochim Biophys Acta Mol Basis Dis ; 1863(9): 2171-2181, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28583715

RESUMEN

Impaired mitochondrial function and generation of reactive oxygen species are deeply implicated in Parkinson's disease progression. Indeed, mutations in genes that affect mitochondrial function account for most of the familial cases of the disease, and post mortem studies in sporadic PD patients brains revealed increased signs of oxidative stress. Moreover, exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mitochondrial complex I inhibitor, leads to clinical symptoms similar to sporadic PD. The bile acid tauroursodeoxycholic acid (TUDCA) is an anti-apoptotic molecule shown to protect against MPTP-induced neurodegeneration in mice, but the mechanisms involved are still incompletely identified. Herein we used MPTP-treated mice, as well as primary cultures of mice cortical neurons and SH-SY5Y cells treated with MPP+ to investigate the modulation of mitochondrial dysfunction by TUDCA in PD models. We show that TUDCA exerts its neuroprotective role in a parkin-dependent manner. Overall, our results point to the pharmacological up-regulation of mitochondrial turnover by TUDCA as a novel neuroprotective mechanism of this molecule, and contribute to the validation of TUDCA clinical application in PD.


Asunto(s)
Antioxidantes/farmacología , Fármacos Neuroprotectores/farmacología , Trastornos Parkinsonianos/tratamiento farmacológico , Ácido Tauroquenodesoxicólico/farmacología , Animales , Masculino , Ratones , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Ubiquitina-Proteína Ligasas/metabolismo
12.
Water Res ; 258: 121784, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38761599

RESUMEN

The present study aims to characterize the bacterial community, resistome and integron abundance of a municipal wastewater treatment plant (WWTP) over the course of 12 months and evaluate the year-long performance of integron-related genes as potential indicators of antibiotic resistance mechanisms in influents and effluents. For that, total DNA was extracted and subjected to 16S rRNA-targeted metabarcoding, high-throughput (HT) qPCR (48 targets) and standard qPCR (5 targets). Targets included integrase genes, antibiotic resistance genes (ARGs) and putative pathogenic groups. A total of 16 physicochemical parameters determined in the wastewater samples were also considered. Results revealed that the WWTP treatment significantly impacted the bacterial community, as well as the content in ARGs and integrase genes. Indeed, there was a relative enrichment from influent to effluent of 13 pathogenic groups (e.g., Legionella and Mycobacterium) and genes conferring resistance to sulphonamides, aminoglycosides and disinfectants. Effluent samples (n = 25) also presented seasonal differences, with an increase of the total ARGs' concentration in summer, and differences between winter and summer on relative abundance of sulphonamide and disinfectant resistance mechanisms. From the eight putative integron-related genes selected, all were positively correlated with the total ARGs' content in wastewater and the relative abundance of resistance to most of the specific antibiotic classes. The genes intI1, blaGES and qacE∆1 were the most strongly correlated with the total concentration of ARGs. Genes blaGES and blaVIM, were better correlated to resistance to beta-lactams, aminoglycosides and tetracyclines. This study supports the use of integron-related genes as powerful indicators of antibiotic resistance in wastewater, being robust despite the variability caused by wastewater treatment and seasonality.


Asunto(s)
Farmacorresistencia Microbiana , Integrones , Estaciones del Año , Aguas Residuales , Integrones/genética , Farmacorresistencia Microbiana/genética , Eliminación de Residuos Líquidos , ARN Ribosómico 16S/genética , Genes Bacterianos , Antibacterianos/farmacología , Bacterias/genética , Bacterias/efectos de los fármacos
13.
J Mol Med (Berl) ; 102(3): 365-377, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38197965

RESUMEN

The mechanisms underlying neurodegeneration in Parkinson's disease (PD) are still not fully understood. Glycosylation is an important post-translational modification that affects protein function, cell-cell contacts and inflammation and can be modified in pathologic conditions. Although the involvement of aberrant glycosylation has been proposed for PD, the knowledge of the diversity of glycans and their role in PD is still minimal. Sialyl Lewis X (sLeX) is a sialylated and fucosylated tetrasaccharide with essential roles in cell-to-cell recognition processes. Pathological conditions and pro-inflammatory mediators can up-regulate sLeX expression on cell surfaces, which has important consequences in intracellular signalling and immune function. Here, we investigated the expression of this glycan using in vivo and in vitro models of PD. We show the activation of deleterious glycation-related pathways in mouse striatum upon treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a toxin-based model of PD. Importantly, our results show that MPTP triggers the presentation of more proteins decorated with sLeX in mouse cortex and striatum in a time-dependent manner, as well as increased mRNA expression of its rate-limiting enzyme fucosyltransferase 7. sLeX is expressed in neurons, including dopaminergic neurons, and microglia. Although the underlying mechanism that drives increased sLeX epitopes, the nature of the protein scaffolds and their functional importance in PD remain unknown, our data suggest for the first time that sLeX in the brain may have a role in neuronal signalling and immunomodulation in pathological conditions. KEY MESSAGES: MPTP triggers the presentation of proteins decorated with sLeX in mouse brain. MPTP triggers the expression of sLeX rate-limiting enzyme FUT 7 in striatum. sLeX is expressed in neurons, including dopaminergic neurons, and microglia. sLeX in the brain may have a role in neuronal signalling and immunomodulation.


Asunto(s)
Enfermedad de Parkinson , Animales , Ratones , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Antígeno Sialil Lewis X , Inflamación , Encéfalo/metabolismo , Modelos Teóricos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166980, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38061599

RESUMEN

Disruption of brain cholesterol homeostasis has been implicated in neurodegeneration. Nevertheless, the role of cholesterol in Parkinson's Disease (PD) remains unclear. We have used N2a mouse neuroblastoma cells and primary cultures of mouse neurons and 1-methyl-4-phenylpyridinium (MPP+), a known mitochondrial complex I inhibitor and the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), known to trigger a cascade of events associated with PD neuropathological features. Simultaneously, we utilized other mitochondrial toxins, including antimycin A, oligomycin, and carbonyl cyanide chlorophenylhydrazone. MPP+ treatment resulted in elevated levels of total cholesterol and in a Niemann Pick type C1 (NPC1)-like phenotype characterized by accumulation of cholesterol in lysosomes. Interestingly, NPC1 mRNA levels were specifically reduced by MPP+. The decrease in NPC1 levels was also seen in midbrain and striatum from MPTP-treated mice and in primary cultures of neurons treated with MPP+. Together with the MPP+-dependent increase in intracellular cholesterol levels in N2a cells, we observed an increase in 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and a concomitant increase in the phosphorylated levels of mammalian target of rapamycin (mTOR). NPC1 knockout delayed cell death induced by acute mitochondrial damage, suggesting that transient cholesterol accumulation in lysosomes could be a protective mechanism against MPTP/MPP+ insult. Interestingly, we observed a negative correlation between NPC1 protein levels and disease stage, in human PD brain samples. In summary, MPP+ decreases NPC1 levels, elevates lysosomal cholesterol accumulation and alters mTOR signaling, adding to the existing notion that PD may rise from alterations in mitochondrial-lysosomal communication.


Asunto(s)
Enfermedad de Parkinson , Animales , Humanos , Ratones , Colesterol/metabolismo , Mamíferos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteína Niemann-Pick C1 , Fenotipo , Serina-Treonina Quinasas TOR/metabolismo
15.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 166993, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38142760

RESUMEN

Cholesterol 24-hydroxylase (CYP46A1) is an exclusively neuronal cytochrome P450 enzyme responsible for converting cholesterol into 24S-hydroxycholesterol, which serves as the primary pathway for eliminating cholesterol in the brain. We and others have shown that increased activity of CYP46A1 leads to reduced levels of cholesterol and has a positive effect on cognition. Therefore, we hypothesized that CYP46A1 could be a potential therapeutic target in Niemann-Pick type C (NPC) disease, a rare and fatal neurodegenerative disorder, characterized by cholesterol accumulation in endolysosomal compartments. Herein, we show that CYP46A1 ectopic expression, in cellular models of NPC and in Npc1tm(I1061T) mice by adeno-associated virus-mediated gene therapy improved NPC disease phenotype. Amelioration in functional, biochemical, molecular and neuropathological hallmarks of NPC disease were characterized. In vivo, CYP46A1 expression partially prevented weight loss and hepatomegaly, corrected the expression levels of genes involved in cholesterol homeostasis, and promoted a redistribution of brain cholesterol accumulated in late endosomes/lysosomes. Moreover, concomitant with the amelioration of cholesterol metabolism dysregulation, CYP46A1 attenuated microgliosis and lysosomal dysfunction in mouse cerebellum, favoring a pro-resolving phenotype. In vivo CYP46A1 ectopic expression improves important features of NPC disease and may represent a valid therapeutic approach to be used concomitantly with other drugs. However, promoting cholesterol redistribution does not appear to be enough to prevent Purkinje neuronal death in the cerebellum. This indicates that cholesterol buildup in neurons might not be the main cause of neurodegeneration in this human lipidosis.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Ratones , Humanos , Animales , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/terapia , Enfermedad de Niemann-Pick Tipo C/metabolismo , Colesterol 24-Hidroxilasa/metabolismo , Colesterol 24-Hidroxilasa/uso terapéutico , Colesterol/metabolismo , Encéfalo/metabolismo , Cerebelo/patología
16.
FEBS Lett ; 597(10): 1319-1344, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36915180

RESUMEN

Chromophore-bearing proteins that are (reversibly) altered after light illumination are major functional components of nature. They gained considerable attention in the last decades since the dynamic interactions of the chromophore and protein matrix can be used to control downstream effects altering the functionality of proteins, cells, or complete organisms with light (optogenetics). Additionally, the photophysical effects can be employed to add capabilities to optical imaging. For example, light can be used to reversibly switch the signal on or off (e.g., fluorescence). In this article, we review chromophore and protein matrix interactions, focusing on photoswitching fluorescent proteins of the GFP family (RSFPs) and natively photoswitching bacteriophytochromes (BphPs). This review aims to provide an in-depth understanding of the dynamic interplay between photoswitching photophysics and the protein matrix and a thorough discussion on how this connection has been harnessed for the development of optogenetic and imaging tools.


Asunto(s)
Proteínas Fluorescentes Verdes , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Fluorescencia
17.
Environ Pollut ; 332: 121995, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37302790

RESUMEN

Microplastics (MPs) might accumulate and transport antibiotic-resistant bacteria (ARB) in aquatic systems. We determined the abundance and diversity of culturable ciprofloxacin- and cefotaxime-resistant bacteria in biofilms covering MPs placed in river water, and characterized priority pathogens from these biofilms. Our results showed that the abundance of ARB colonizing MPs tends to be higher compared to sand particles. Also, higher numbers were cultivated from a mixture of polypropylene (PP), polyethylene (PE) and polyethylene terephthalate (PET), compared to PP and PET alone. Aeromonas and Pseudomonas isolates were the most frequently retrieved from MPs placed before a WWTP discharge while Enterobacteriaceae dominated the culturable plastisphere 200 m after the WWTP discharge. Ciprofloxacin- and/or cefotaxime-resistant Enterobacteriaceae (n = 54 unique isolates) were identified as Escherichia coli (n = 37), Klebsiella pneumoniae (n = 3), Citrobacter spp. (n = 9), Enterobacter spp. (n = 4) and Shigella sp. (n = 1). All isolates presented at least one of the virulence features tested (i.e. biofilm formation, haemolytic activity and production of siderophores), 70% carried the intI1 gene and 85% exhibited a multi-drug resistance phenotype. Plasmid-mediated quinolone resistance genes were detected in ciprofloxacin-resistant Enterobacteriaceae [aacA4-cr (40% of the isolates), qnrS (30%), qnrB (25%), and qnrVC (8%)], along with mutations in gyrA (70%) and parC (72%). Cefotaxime-resistant strains (n = 23) harbored blaCTX-M (70%), blaTEM (61%) and blaSHV (39%). Among CTX-M producers, high-risk clones of E. coli (e.g. ST10 or ST131) and K. pneumoniae (ST17) were identified, most of which carrying blaCTX-M-15. Ten out of 16 CTX-M producers were able to transfer blaCTX-M to a recipient strain. Our results demonstrated the occurrence of multidrug resistant Enterobacteriaceae in the riverine plastisphere, harboring ARGs of clinical concern and exhibiting virulence traits, suggesting a contribution of MPs to the dissemination of antibiotic-resistant priority pathogens. The type of MPs and especially water contamination (e.g. by WWTPs discharges) seem to determine the resistome of the riverine plastisphere.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Microplásticos , Plásticos/farmacología , Antagonistas de Receptores de Angiotensina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Aguas Residuales , beta-Lactamasas/genética , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Cefotaxima/farmacología , Enterobacteriaceae/genética , Ciprofloxacina/farmacología , Klebsiella pneumoniae/genética , Agua , Pruebas de Sensibilidad Microbiana
18.
Mar Pollut Bull ; 186: 114464, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36502771

RESUMEN

The main goal of the present study is to determine the sources of methylmercury (MeHg) for high fish-consumption populations with the Portuguese population as showcase, as Portugal is the EU country with the highest fish consumption per capita (2019: 59.91 kg year-1). Since limited information is available on the effective levels of mercury after culinary treatments, cooked and raw codfish (Gadus morhua), hake (Merluccius merluccius), octopus (Octopus vulgaris), horse mackerel (Trachurus trachurus) and sardine (Sardina pilchardus) were considered. The mercury concentration ranking Hake > Horse mackerel > Codfish > Octopus > Sardine was observed in all situations (cooked and raw samples) for both MeHg and total mercury (T-Hg). The gathered results reinforce the general assumption that the loss of moisture during cooking increases MeHg and T-Hg concentrations in fish, but the idea that MeHg in fish muscle tissue represents the bulk of T-Hg cannot be generalised, as our study determined a MeHg/T-Hg ratio of 0.43 for grilled sardines.


Asunto(s)
Gadiformes , Mercurio , Compuestos de Metilmercurio , Perciformes , Animales , Explotaciones Pesqueras , Peces , Alimentos Marinos/análisis
19.
Open Biol ; 13(8): 230103, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553073

RESUMEN

The vascular system is inefficiently repaired after spinal cord injury (SCI) in mammals, resulting in secondary tissue damage and immune deregulation that contribute to the limited functional recovery. Unlike mammals, zebrafish can repair the spinal cord (SC) and restore motility, but the vascular response to injury has not been investigated. Here, we describe the zebrafish SC blood vasculature, starting in development with the initial vessel ingression in a body size-dependent manner, the acquisition of perivascular support and the establishment of ventral to dorsal blood circulation. The vascular organization grows in complexity and displays multiple barrier specializations in adulthood. After injury, vessels rapidly regrow into the lesion, preceding the glial bridge and axons. Vascular repair involves an early burst of angiogenesis that creates dysmorphic and leaky vessels. Dysfunctional vessels are later removed, as pericytes are recruited and the blood-SC barrier is re-established. This study demonstrates that zebrafish can successfully re-vascularize the spinal tissue, reinforcing the value of this organism as a regenerative model for SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Médula Espinal , Pez Cebra , Animales , Médula Espinal/irrigación sanguínea , Neovascularización Patológica
20.
J Lipid Res ; 53(9): 1910-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22693257

RESUMEN

The CYP46A1 gene codes for the cholesterol 24-hydroxylase, a cytochrome P450 specifically expressed in neurons and responsible for the majority of cholesterol turnover in the central nervous system. Previously, we have demonstrated the critical participation of Sp transcription factors in the CYP46A1 response to histone deacetylase (HDAC) inhibitors, and in this study we investigated the involvement of intracellular signaling pathways in the trichostatin A (TSA) effect. Our results show that pretreatment of neuroblastoma cells with chemical inhibitors of mitogen-activated kinase kinase (MEK)1 significantly potentiates the TSA-dependent induction of cholesterol 24-hydroxylase, whereas inhibition of protein phosphatases by okadaic acid (OA) or overexpression of MEK1 partially impairs the TSA effect without affecting histone hyperacetylation at the promoter. Immunoblotting revealed that TSA treatment decreases ERK1/2 phosphorylation concomitantly with a decrease in Sp3 binding activity, which are both reversed by pretreatment with OA. Chromatin immunoprecipitation analysis demonstrated that TSA induces the release of p-ERK1/2 from the CYP46A1 proximal promoter, whereas pretreatment with OA restores the co-occupancy of Sp3-ERK1/2 in the same promoter fragments. We demonstrate for the first time the participation of MEK-ERK1/2 signaling pathway in HDAC inhibitor-dependent induction of cytochrome P450 gene expression, underlying the importance of this regulatory signaling mechanism in the control of brain cholesterol elimination.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Ácidos Hidroxámicos/antagonistas & inhibidores , Ácidos Hidroxámicos/farmacología , Neuronas/efectos de los fármacos , Ácido Ocadaico/farmacología , Transducción de Señal/efectos de los fármacos , Esteroide Hidroxilasas/genética , Encéfalo/citología , Línea Celular Tumoral , Colesterol/metabolismo , Colesterol 24-Hidroxilasa , Inducción Enzimática/efectos de los fármacos , Homeostasis/efectos de los fármacos , Humanos , MAP Quinasa Quinasa 1/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neuronas/citología , Neuronas/enzimología , Neuronas/metabolismo , Especificidad de Órganos , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Factor de Transcripción Sp3/metabolismo , Esteroide Hidroxilasas/biosíntesis , Factores de Tiempo , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA