Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Curr Biol ; 33(4): 755-763.e3, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36702128

RESUMEN

Reptiles display great diversity in color and pattern, yet much of what we know about vertebrate coloration comes from classic model species such as the mouse and zebrafish.1,2,3,4 Captive-bred ball pythons (Python regius) exhibit a remarkable degree of color and pattern variation. Despite the wide range of Mendelian color phenotypes available in the pet trade, ball pythons remain an overlooked species in pigmentation research. Here, we investigate the genetic basis of the recessive piebald phenotype, a pattern defect characterized by patches of unpigmented skin (leucoderma). We performed whole-genome sequencing and used a case-control approach to discover a nonsense mutation in the gene encoding the transcription factor tfec, implicating this gene in the leucodermic patches in ball pythons. We functionally validated tfec in a lizard model (Anolis sagrei) using the gene editing CRISPR/Cas9 system and TEM imaging of skin. Our findings show that reading frame mutations in tfec affect coloration and lead to a loss of iridophores in Anolis, indicating that tfec is required for chromatophore development. This study highlights the value of captive-bred ball pythons as a model species for accelerating discoveries on the genetic basis of vertebrate coloration.


Asunto(s)
Cromatóforos , Lagartos , Piebaldismo , Animales , Ratones , Pez Cebra , Lagartos/genética , Pigmentación/genética , Proteínas de Pez Cebra , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice
2.
Ecol Evol ; 12(8): e9127, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35923947

RESUMEN

Organismal traits are presumed to be well suited for performance in the tasks required for survival, growth, and reproduction. Major injuries to such traits should therefore compromise performance and prevent success in the natural world; yet some injured animals can survive for long periods of time and contribute to future generations. We here examine 3 years of camera trap observations along a remote trail through old-growth forest in northern British Columbia, Canada. The most common observations were of moose (2966), wolves (476), and brown bears (224). The moose overwhelmingly moved in one direction along the trail in the late fall and early winter and in the other direction in the spring. This movement was clustered/contagious, with days on which many moose traveled often being interspersed with days on which few moose traveled. On the video recordings, we identified 12 injured moose, representing 1.4% of all moose observations. Seven injuries were to the carpus, three were to the antebrachium, and two were to the tarsus-and they are hypothesized to reflect damage to ligaments, tendons, and perhaps bones. The injured moose were limping in all cases, sometimes severely; and yet they did not differ noticeably from uninjured moose in the direction, date, contagiousness, or speed of movement along the trail. We discuss the potential relevance of these findings for the action of natural selection in the evolution of organismal traits important for performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA