Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Curr Opin Lipidol ; 34(4): 141-146, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36942869

RESUMEN

PURPOSE OF REVIEW: Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent progressive condition that lacks a specific pharmacological treatment. ATP-citrate lyase (ACLY) is one of the emergent targets for the treatment of NAFLD. This review aims to summarize the role of ACLY in NAFLD, provide evidence of the beneficial effects of the ACLY inhibitor bempedoic acid (BemA) in NAFLD and discuss the mechanisms involved. RECENT FINDINGS: BemA is effective in reducing hepatic steatosis in several animal models that recapitulate different stages of the disease. Thus, in a dietary model of simple hepatic steatosis in female rats, BemA abrogates the accumulation of liver fat. Apart from ACLY inhibition, BemA has several functions in the liver that contribute to the antisteatotic effect: inhibition of ketohexokinase, induction of patatin-like phospholipase domain-containing protein 3 and increases in both fatty acid ß-oxidation activity and hepatic H 2 S production. In models of the advanced phases of NAFLD, BemA reduces not only steatosis, but also ballooning, lobular inflammation and hepatic fibrosis, by mechanisms involving both hepatocytes and hepatic stellate cells. SUMMARY: BemA, an ACLY inhibitor currently approved for the treatment of hypercholesterolemia, may be a useful drug to treat NAFLD through its antisteatotic, anti-inflammatory and antifibrotic effects.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Femenino , Animales , Ratas , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Ácidos Grasos/metabolismo , Ácidos Dicarboxílicos/farmacología , Ácidos Dicarboxílicos/uso terapéutico
2.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613916

RESUMEN

We previously demonstrated that treatment with BemA (bempedoic acid), an inhibitor of ATP citrate lyase, significantly reduces fatty liver in a model of liver steatosis (HFHFr-female Sprague-Dawley rat fed a high-fat high-fructose diet). Since the hepatic production of the gasotransmitter H2S is impaired in liver disorders, we were interested in determining if the production of H2S was altered in our HFHFr model and whether the administration of BemA reversed these changes. We used stored liver samples from a previous study to determine the total and enzymatic H2S production, as well as the expression of CBS (cystathionine ß-synthase), CSE (cystathionine γ-lyase), and 3MST (3-mercaptopiruvate sulfurtransferase), and the expression/activity of FXR (farnesoid X receptor), a transcription factor involved in regulating CSE expression. Our data show that the HFHFr diet reduces the total and enzymatic production of liver H2S, mainly by decreasing the expression of CBS and CSE. Furthermore, BemA treatment restored H2S production, increasing the expression of CBS and CSE, providing evidence for the involvement of FXR transcriptional activity and the mTORC1 (mammalian target of rapamycin1)/S6K1 (ribosomal protein S6 kinase beta-1)/PGC1α (peroxisome proliferator receptor gamma coactivator1α) pathway.


Asunto(s)
Sulfuro de Hidrógeno , Enfermedad del Hígado Graso no Alcohólico , Animales , Femenino , Ratas , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Dieta Alta en Grasa/efectos adversos , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratas Sprague-Dawley
3.
Eur J Nutr ; 58(3): 1283-1297, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29516226

RESUMEN

PURPOSE: Sugar-sweetened beverage intake is a risk factor for insulin resistance, dyslipidemia, fatty liver, and steatohepatitis (NASH). Sub-chronic supplementation of liquid fructose, but not glucose, in female rats increases liver and plasma triglycerides without inflammation. We hypothesized that chronic supplementation of fructose would cause NASH and liver insulin resistance. METHODS: We supplemented female Sprague-Dawley rats with water or either fructose or glucose 10% w/v solutions under isocaloric conditions for 7 months. At the end, plasma analytes, insulin, and adiponectin were determined, as well as liver triglyceride content and the expression of key genes controlling inflammation, fatty acid synthesis and oxidation, endoplasmic reticulum stress, and plasma VLDL clearance, by biochemical and histological methods. RESULTS: Although sugar-supplemented rats increased their energy intake by 50-60%, we found no manifestation of liver steatosis, fibrosis or necrosis, unchanged plasma or tissue markers of inflammation or fibrosis, and reduced liver expression of gluconeogenic enzymes, despite both sugars increased fatty acid synthesis, mTORC1, and IRE1 activity, while decreasing fatty acid oxidation and PPARα activity. Only fructose-supplemented rats were hypertriglyceridemic, showing a reduced expression of VLDL receptor and lipoprotein lipase in skeletal muscle and vWAT. Glucose-supplemented rats showed increased adiponectinemia, which would explain the different metabolic outcomes of the two sugars. CONCLUSIONS: Chronic liquid simple sugar supplementation, as the sole risk factor, is not enough for female rats to develop NASH and increased liver gluconeogenesis. Nevertheless, under isocaloric conditions, only fructose induced hypertriglyceridemia, thus confirming that also the type of nutrient matters in the development of metabolic diseases.


Asunto(s)
Hígado Graso , Fructosa/administración & dosificación , Fructosa/efectos adversos , Hipertrigliceridemia/inducido químicamente , Inflamación , Receptores de LDL/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Femenino , Resistencia a la Insulina , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratas , Ratas Sprague-Dawley , Triglicéridos/metabolismo
4.
Int J Mol Sci ; 20(5)2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30841536

RESUMEN

One of the most important threats to global human health is the increasing incidences of metabolic pathologies (including obesity, type 2 diabetes and non-alcoholic fatty liver disease), which is paralleled by increasing consumptions of hypercaloric diets enriched in simple sugars. The challenge is to identify the metabolic pathways affected by the excessive consumption of these dietary components when they are consumed in excess, to unravel the molecular mechanisms leading to metabolic pathologies and identify novel therapeutic targets to manage them. Mechanistic (mammalian) target of rapamycin (mTOR) has emerged as one of the key molecular nodes that integrate extracellular signals, such as energy status and nutrient availability, to trigger cell responses that could lead to the above-mentioned diseases through the regulation of lipid and glucose metabolism. By activating mTOR signalling, excessive consumption of simple sugars (such as fructose and glucose), could modulate hepatic gluconeogenesis, lipogenesis and fatty acid uptake and catabolism and thus lipid deposition in the liver. In the present review we will discuss some of the most recent studies showing the central role of mTOR in the metabolic effects of excessive simple sugar consumption.


Asunto(s)
Fructosa/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Humanos , Metabolismo de los Lípidos , Transducción de Señal
5.
Am J Physiol Heart Circ Physiol ; 312(2): H289-H304, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27923787

RESUMEN

High consumption of simple sugars causes adverse cardiometabolic effects. We investigated the mechanisms underlying the metabolic and vascular effects of glucose or fructose intake and determined whether these effects are exclusively related to increased calorie consumption. Female Sprague-Dawley rats were supplemented with 20% wt/vol glucose or fructose for 2 mo, and plasma analytes and aortic response to vasodilator and vasoconstrictor agents were determined. Expression of molecules associated with lipid metabolism, insulin signaling, and vascular response were evaluated in hepatic and/or aortic tissues. Caloric intake was increased in both sugar-supplemented groups vs. control and in glucose- vs. fructose-supplemented rats. Hepatic lipogenesis was induced in both groups. Plasma triglycerides were increased only in the fructose group, together with decreased expression of carnitine palmitoyltransferase-1A and increased microsomal triglyceride transfer protein expression in the liver. Plasma adiponectin and peroxisome proliferator-activated receptor (PPAR)-α expression was increased only by glucose supplementation. Insulin signaling in liver and aorta was impaired in both sugar-supplemented groups, but the effect was more pronounced in the fructose group. Fructose supplementation attenuated aortic relaxation response to a nitric oxide (NO) donor, whereas glucose potentiated it. Phenylephrine-induced maximal contractions were reduced in the glucose group, which could be related to increased endothelial NO synthase (eNOS) phosphorylation and subsequent elevated basal NO in the glucose group. In conclusion, despite higher caloric intake in glucose-supplemented rats, fructose caused worse metabolic and vascular responses. This may be because of the elevated adiponectin level and the subsequent enhancement of PPARα and eNOS phosphorylation in glucose-supplemented rats. NEW & NOTEWORTHY: This is the first study comparing the effects of glucose and fructose consumption on metabolic factors and aortic function in female rats. Our results show that, although total caloric consumption was higher in glucose-supplemented rats, fructose ingestion had a greater impact in inducing metabolic and aortic dysfunction.


Asunto(s)
Aorta/efectos de los fármacos , Sacarosa en la Dieta/farmacología , Ingestión de Energía , Fructosa/farmacología , Glucosa/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Acetilcolina/farmacología , Adiponectina/metabolismo , Animales , Aorta/metabolismo , Aorta/fisiopatología , Western Blotting , Bradiquinina/farmacología , Carnitina O-Palmitoiltransferasa/efectos de los fármacos , Carnitina O-Palmitoiltransferasa/metabolismo , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/metabolismo , Femenino , Insulina/metabolismo , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo III/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Nitroprusiato/farmacología , PPAR alfa/efectos de los fármacos , PPAR alfa/metabolismo , Fenilefrina/farmacología , Fosforilación , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Triglicéridos/metabolismo , Vasoconstrictores/farmacología , Vasodilatadores/farmacología
6.
Biochim Biophys Acta ; 1851(2): 107-16, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25463011

RESUMEN

Supplementation with 10% liquid fructose to female rats for 2weeks caused hepatic steatosis through increased lipogenesis and reduced peroxisome proliferator activated receptor (PPAR) α activity and fatty acid catabolism, together with increased expression of the spliced form of X-binding protein-1 (Rebollo et al., 2014). In the present study, we show that some of these effects are preserved after sub-chronic (8weeks) fructose supplementation, specifically increased hepatic expression of lipid synthesis-related genes (stearoyl-CoA desaturase, ×6.7-fold; acetyl-CoA carboxylase, ×1.6-fold; glycerol-3-phosphate acyltransferase, ×1.65-fold), and reduced fatty acid ß-oxidation (×0.77-fold), resulting in increased liver triglyceride content (×1.69-fold) and hepatic steatosis. However, hepatic expression of PPARα and its target genes was not modified and, further, livers of 8-week fructose-supplemented rats showed no sign of unfolded protein response activation, except for an increase in p-IRE1 levels. Hepatic mTOR phosphorylation was enhanced (×1.74-fold), causing an increase in the phosphorylation of UNC-51-like kinase 1 (ULK-1) (×2.8-fold), leading to a decrease in the ratio of LC3B-II/LC3B-I protein expression (×0.39-fold) and an increase in the amount of the autophagic substrate p62, indicative of decreased autophagy activity. A harmful cycle may be established in the liver of 8-week fructose-supplemented rats where lipid accumulation may cause defective autophagy, and reduced autophagy may result in decreased free fatty acid formation from triglyceride depots, thus reducing the substrates for ß-oxidation and further increasing hepatic steatosis. In summary, the length of supplementation is a key factor in the metabolic disturbances induced by fructose: in short-term studies, PPARα inhibition and ER stress induction are critical events, whereas after sub-chronic supplementation, mTOR activation and autophagy inhibition are crucial.


Asunto(s)
Autofagia , Estrés del Retículo Endoplásmico , Hígado Graso/enzimología , Fructosa , Hígado/enzimología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Modelos Animales de Enfermedad , Activación Enzimática , Ácidos Grasos/metabolismo , Hígado Graso/inducido químicamente , Hígado Graso/genética , Hígado Graso/patología , Femenino , Regulación de la Expresión Génica , Glucólisis/genética , Hipertrigliceridemia/inducido químicamente , Hipertrigliceridemia/enzimología , Hipertrigliceridemia/patología , Lipogénesis , Hígado/patología , Oxidación-Reducción , PPAR alfa/metabolismo , Vía de Pentosa Fosfato/genética , Fosforilación , Ratas Sprague-Dawley , Transducción de Señal , Factores de Tiempo , Triglicéridos/metabolismo
7.
Eur J Nutr ; 55(2): 665-674, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25808117

RESUMEN

PURPOSE: Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and cardiovascular diseases. However, consumption of beverages containing fructose is allowed during gestation. Recently, we found that an intake of fructose (10 % wt/vol) throughout gestation produces impaired fetal leptin signaling and hepatic steatosis. Therefore, we have investigated whether fructose intake during pregnancy produces subsequent changes in the progeny, when adult. METHODS: Fed 261-day-old male and female descendants from fructose-fed, control or glucose-fed mothers were used. Plasma was used to analyze glucose, insulin, leptin, and adiponectin. Hepatic expression of proteins related to insulin signaling was determined. RESULTS: Fructose intake throughout pregnancy did not produce alterations in the body weight of the progeny. Adult male progeny of fructose-fed mothers had elevated levels of insulin without a parallel increase in phosphorylation of protein kinase B. However, they displayed an augmented serine phosphorylation of insulin receptor substrate-2, indicating reduced insulin signal transduction. In agreement, adiponectin levels, which have been positively related to insulin sensitivity, were lower in male descendants from fructose-fed mothers than in the other two groups. Furthermore, mRNA levels for insulin-responsive genes were not affected (phosphoenolpyruvate carboxykinase, glucose-6-phosphatase) or they were decreased (sterol response element-binding protein-1c) in the livers of male progeny from fructose-supplemented rats. On the contrary, adult female rats from fructose-fed mothers did not exhibit any of these disturbances. CONCLUSION: Maternal fructose, but not glucose, intake confined to the prenatal stage provokes impaired insulin signal transduction, hyperinsulinemia, and hypoadiponectinemia in adult male, but not female, progeny.


Asunto(s)
Adiponectina/deficiencia , Fructosa/efectos adversos , Hiperinsulinismo/etiología , Resistencia a la Insulina , Fenómenos Fisiologicos Nutricionales Maternos , Errores Innatos del Metabolismo/etiología , Adiponectina/sangre , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Peso Corporal , Hígado Graso/sangre , Hígado Graso/etiología , Femenino , Feto/efectos de los fármacos , Feto/metabolismo , Fructosa/administración & dosificación , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Hiperinsulinismo/sangre , Insulina/sangre , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Leptina/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Errores Innatos del Metabolismo/sangre , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Fosforilación , Embarazo , Efectos Tardíos de la Exposición Prenatal , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
8.
Biochim Biophys Acta ; 1841(4): 514-24, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24434080

RESUMEN

Fructose ingestion is associated with the production of hepatic steatosis and hypertriglyceridemia. For fructose to attain these effects in rats, simultaneous induction of fatty acid synthesis and inhibition of fatty acid oxidation is required. We aimed to determine the mechanism involved in the inhibition of fatty acid oxidation by fructose and whether this effect occurs also in human liver cells. Female rats were supplemented or not with liquid fructose (10% w/v) for 7 or 14 days; rat (FaO) and human (HepG2) hepatoma cells, and human hepatocytes were incubated with fructose 25mM for 24h. The expression and activity of the enzymes and transcription factors relating to fatty acid ß-oxidation were evaluated. Fructose inhibited the activity of fatty acid ß-oxidation only in livers of 14-day fructose-supplemented rats, as well as the expression and activity of peroxisome proliferator activated receptor α (PPARα). Similar results were observed in FaO and HepG2 cells and human hepatocytes. PPARα downregulation was not due to an osmotic effect or to an increase in protein-phosphatase 2A activity caused by fructose. Rather, it was related to increased content in liver of inactive and acetylated peroxisome proliferator activated receptor gamma coactivator 1α, due to a reduction in sirtuin 1 expression and activity. In conclusion, fructose inhibits liver fatty acid oxidation by reducing PPARα expression and activity, both in rat and human liver cells, by a mechanism involving sirtuin 1 down-regulation.


Asunto(s)
Ácidos Grasos/metabolismo , Fructosa/farmacología , Hígado/efectos de los fármacos , Sirtuina 1/biosíntesis , Animales , Ácidos Grasos/antagonistas & inhibidores , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Hígado/patología , Oxidación-Reducción , PPAR alfa/biosíntesis , PPAR alfa/metabolismo , Ratas , Sirtuina 1/genética
9.
Biomed Pharmacother ; 177: 117067, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38943989

RESUMEN

BACKGROUND AND AIMS: Drugs resolving steatotic liver disease (SLD) could prevent the evolution of metabolic dysfunction associated SLD (MASLD) to more aggressive forms but must show not only efficacy, but also a high safety profile. Repurposing of drugs in clinical use, such as pemafibrate and mirabegron, could facilitate the finding of an effective and safe drug-treatment for SLD. APPROACH AND RESULTS: The SLD High Fat High Fructose (HFHFr) rat model develops steatosis without the influence of other metabolic disturbances, such as obesity, inflammation, or type 2 diabetes. Further, liver fatty acids are provided, as in human pathology, both from dietary origin and de novo lipid synthesis. We used the HFHFr model to evaluate the efficacy of pemafibrate and mirabegron, alone or in combination, in the resolution of SLD, analyzing zoometric, biochemical, histological, transcriptomic, fecal metabolomic and microbiome data. We provide evidence showing that pemafibrate, but not mirabegron, completely reverted liver steatosis, due to a direct effect on liver PPARα-driven fatty acid catabolism, without changes in total energy consumption, subcutaneous, perigonadal and brown fat, blood lipids and body weight. Moreover, pemafibrate treatment showed a neutral effect on whole-body glucose metabolism, but deeply modified fecal bile acid composition and microbiota. CONCLUSIONS: Pemafibrate administration reverts liver steatosis in the HFHFr dietary rat SLD model without altering parameters related to metabolic or organ toxicity. Our results strongly support further clinical research to reposition pemafibrate for the treatment of SLD/MASLD.


Asunto(s)
Benzoxazoles , Ácidos y Sales Biliares , Modelos Animales de Enfermedad , Heces , Animales , Ácidos y Sales Biliares/metabolismo , Masculino , Ratas , Benzoxazoles/farmacología , Heces/microbiología , Heces/química , Microbioma Gastrointestinal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Acetanilidas/farmacología , Butiratos/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratas Wistar , Tiazoles/farmacología , Hígado Graso/tratamiento farmacológico , Hígado Graso/patología , Hígado Graso/metabolismo , Fructosa/efectos adversos
10.
Cells ; 13(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39120278

RESUMEN

Sex differences may play a role in the etiopathogenesis and severity of metabolic dysfunction-associated steatotic liver disease (MASLD), a disorder characterized by excessive fat accumulation associated with increased inflammation and oxidative stress. We previously observed the development of steatosis specifically in female rats fed a high-fat diet enriched with liquid fructose (HFHFr) for 12 weeks. The aim of this study was to better characterize the observed sex differences by focusing on the antioxidant and cytoprotective pathways related to the KEAP1/NRF2 axis. The KEAP1/NRF2 signaling pathway, autophagy process (LC3B and LAMP2), and endoplasmic reticulum stress response (XBP1) were analyzed in liver homogenates in male and female rats that were fed a 12-week HFHFr diet. In females, the HFHFr diet resulted in the initial activation of the KEAP1/NRF2 pathway, which was not followed by the modulation of downstream molecular targets; this was possibly due to the increase in KEAP1 levels preventing the nuclear translocation of NRF2 despite its cytosolic increase. Interestingly, while in both sexes the HFHFr diet resulted in an increase in the levels of LC3BII/LC3BI, a marker of autophagosome formation, only males showed a significant upregulation of LAMP2 and XBP1s; this did not occur in females, suggesting impaired autophagic flux in this sex. Overall, our results suggest that males are characterized by a greater ability to cope with an HFHFr metabolic stimulus mainly through an autophagic-mediated proteostatic process while in females, this is impaired. This might depend at least in part upon the fine modulation of the cytoprotective and antioxidant KEAP1/NRF2 pathway resulting in sex differences in the occurrence and severity of MASLD. These results should be considered to design effective therapeutics for MASLD.


Asunto(s)
Dieta Alta en Grasa , Fructosa , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Caracteres Sexuales , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Femenino , Masculino , Dieta Alta en Grasa/efectos adversos , Transducción de Señal/efectos de los fármacos , Ratas , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Autofagia/efectos de los fármacos , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Modelos Animales de Enfermedad , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratas Wistar , Estrés Oxidativo/efectos de los fármacos , Proteínas Asociadas a Microtúbulos
11.
Nutrients ; 15(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37764693

RESUMEN

Non-alcoholic fatty liver disease is a sexual dimorphic disease, with adipose tissue playing an essential role. Our previous work showed that female rats fed a high-fat high-fructose diet devoid of cholesterol (HFHFr) developed simple hepatic steatosis dissociated from obesity. This study assessed the impact of the HFHFr diet on the male rat metabolism compared with data obtained for female rats. A total of 16 Sprague Dawley (SD) male rats were fed either a control (standard rodent chow and water) or HFHFr (high-fat diet devoid of cholesterol, plus 10% fructose in drinking water) diet for 3 months. Unlike female rats, and despite similar increases in energy consumption, HFHFr males showed increased adiposity and hyperleptinemia. The expression of hormone-sensitive lipase in the subcutaneous white adipose tissue was enhanced, leading to high free fatty acid and glycerol serum levels. HFHFr males presented hypertriglyceridemia, but not hepatic steatosis, partially due to enhanced liver PPARα-related fatty acid ß-oxidation and the VLDL-promoting effect of leptin. In conclusion, the SD rats showed a sex-related dimorphic response to the HFHFr diet. Contrary to previous results for HFHFr female rats, the male rats were able to expand the adipose tissue, increase fatty acid catabolism, or export it as VLDL, avoiding liver lipid deposition.


Asunto(s)
Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico , Femenino , Ratas , Masculino , Animales , Dieta Alta en Grasa/efectos adversos , Fructosa/efectos adversos , Fructosa/metabolismo , Ratas Sprague-Dawley , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Colesterol/metabolismo
12.
Biochim Biophys Acta ; 1813(6): 1254-60, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21515313

RESUMEN

Tissue factor pathway inhibitor 2 (TFPI2) is a serine protease inhibitor critical for the regulation of extracellular matrix remodeling and atherosclerotic plaque stability. Previously, we demonstrated that TFPI2 expression is increased in monocytes from patients with familial combined hyperlipidemia (FCH). To gain insight into the molecular mechanisms responsible for this upregulation, we examined TFPI2 expression in THP-1 macrophages exposed to lipoproteins and thrombin. Our results showed that TFPI2 expression was not affected by treatment with very low density lipoproteins (VLDL), but was induced by thrombin (10 U/ml) in THP-1 (1.9-fold increase, p<0.001) and human monocyte-derived macrophages (2.3-fold increase, p<0.005). The specificity of the inductive effect was demonstrated by preincubation with the thrombin inhibitors hirudin and PPACK, which ablated thrombin effects. TFPI2 induction was prevented by pre-incubation with MEK1/2 and JNK inhibitors, but not by the EGF receptor antagonist AG1478. In the presence of parthenolide, an inhibitor of NFκB, but not of SR-11302, a selective AP-1 inhibitor, thrombin-mediated TFPI2 induction was blunted. Our results also show that thrombin treatment increased ERK1/2, JNK and IκBα phosphorylation. Finally, we ruled out the possibility that TFPI2 induction by thrombin was mediated by COX-2, as preincubation with a selective COX-2 inhibitor did not prevent the inductive effect. In conclusion, thrombin induces TFPI2 expression by a mechanism involving ERK1/2 and JNK phosphorylation, leading finally to NFkB activation. In the context of atherosclerosis, thrombin-induced macrophage TFPI2 expression could represent a means of avoiding excessive activation of matrix metalloproteases at sites of inflammation.


Asunto(s)
Glicoproteínas/metabolismo , Macrófagos/efectos de los fármacos , Trombina/farmacología , Clorometilcetonas de Aminoácidos/farmacología , Antracenos/farmacología , Antitrombinas/farmacología , Western Blotting , Butadienos/farmacología , Línea Celular , Células Cultivadas , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Expresión Génica/efectos de los fármacos , Glicoproteínas/genética , Hirudinas/farmacología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipoproteínas VLDL/farmacología , Macrófagos/citología , Macrófagos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Nitrilos/farmacología , Nitrobencenos/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sesquiterpenos/farmacología , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Factores de Tiempo
13.
J Hepatol ; 56(5): 1033-1039, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22245887

RESUMEN

BACKGROUND & AIMS: Peroxisome proliferator-activated receptor α (PPARα) is a transcription factor activated by ligands that regulates genes related to vascular tone, oxidative stress, and fibrogenesis, pathways implicated in the development of cirrhosis and portal hypertension. This study aims at evaluating the effects of PPARα activation with fenofibrate on hepatic and systemic hemodynamics, hepatic endothelial dysfunction, and hepatic fibrosis in CCl(4)-cirrhotic rats. METHODS: Mean arterial pressure (MAP), portal pressure (PP), and portal blood flow (PBF) were measured in cirrhotic rats treated with oral fenofibrate (25mg/kg/day, n=10) or its vehicle (n=12) for 7 days. The liver was then perfused and dose-relaxation curves to acetylcholine (Ach) were performed. We also evaluated Sirius Red staining of liver sections, collagen-I mRNA expression, and smooth muscle actin (α-SMA) protein expression, cyclo-oxygenase-1 (COX-1) protein expression, and cGMP levels in liver homogenates, and TXB(2) production in perfusates. Nitric oxide (NO) bioavailability and eNOS activation were measured in hepatic endothelial cells (HEC) isolated from cirrhotic rat livers. RESULTS: CCl(4) cirrhotic rats treated with fenofibrate had a significantly lower PP (-29%) and higher MAP than those treated with vehicle. These effects were associated with a significant reduction in hepatic fibrosis and improved vasodilatory response to acetylcholine. Moreover, a reduction in COX-1 expression and TXB(2) production in rats receiving fenofibrate and a significant increase in NO bioavailability in HEC with fenofibrate were observed. CONCLUSIONS: PPARα activation markedly reduced PP and liver fibrosis and improved hepatic endothelial dysfunction in cirrhotic rats, suggesting it may represent a new therapeutic strategy for portal hypertension in cirrhosis.


Asunto(s)
Endotelio Vascular/fisiopatología , Hipertensión Portal/fisiopatología , Cirrosis Hepática/fisiopatología , Hígado/patología , PPAR alfa/fisiología , Animales , Presión Sanguínea/fisiología , Tetracloruro de Carbono/efectos adversos , Ciclooxigenasa 1/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Hipertensión Portal/metabolismo , Hígado/metabolismo , Hígado/fisiopatología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Masculino , Ratas , Ratas Wistar , Tromboxano B2/metabolismo
14.
Clin Investig Arterioscler ; 34(2): 57-67, 2022.
Artículo en Inglés, Español | MEDLINE | ID: mdl-34887111

RESUMEN

INTRODUCTION: In its initial stages, nonalcoholic fatty liver disease presents hypertriglyceridemia and accumulation of lipids in the liver (hepatic steatosis). Bempedoic acid is an ATP:citrate lyase inhibitor that promotes a dual inhibition of the synthesis of cholesterol and fatty acids. However, its effect in the prevention / treatment of hepatic steatosis and hypertriglyceridemia has not been investigated. The aim of our work has been to elucidate whether bempedoic acid, through a mechanism other than ATP:citrate lyase inhibition, reverses these metabolic alterations. EXPERIMENTAL DESIGN: The study was carried out in female Sprague-Dawley rats fed, for three months, with a high fat diet supplemented with fructose (10% w/v) in drinking water. During the last month, bempedoic acid (30mg/kg/day) was administered to a group of animals. Zoometric and plasmatic parameters were analyzed, gene and protein expression analysis were performed in liver samples and PPAR-PPRE binding activity was determined. RESULTS: Our interventional model developed hepatic steatosis and hypertriglyceridemia. Despite an increase in total caloric intake, there was no increase in body weight of the animals. The administration of bempedoic acid significantly reduced hepatic steatosis and promoted a marked hepatocyte hypertrophy. There was a 66% increase in the liver weight of the animals treated with the drug that was not accompanied by modifications in the markers of inflammation, oxidative stress, or endoplasmic reticulum stress. Bempedoic acid activated the peroxisome proliferator activated nuclear receptor (PPARα) and its target genes. CONCLUSIONS: Bempedoic acid could be an effective therapy for the treatment of fatty liver and associated cardiovascular risk. Bempedoic acid has other mechanisms of action besides the inhibition of ATP: citrate lyase, such as the activation of PPARα, which could explain the reduction in hepatic steatosis and the increase in liver weight observed in animals treated with the drug.


Asunto(s)
Hipertrigliceridemia , Enfermedad del Hígado Graso no Alcohólico , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Ácidos Dicarboxílicos , Ácidos Grasos/farmacología , Femenino , Humanos , Hipertrigliceridemia/prevención & control , Hígado/metabolismo , Modelos Teóricos , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR alfa/farmacología , Ratas , Ratas Sprague-Dawley
15.
Biomedicines ; 10(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35884822

RESUMEN

Bempedoic acid (BemA) is an ATP-citrate lyase (ACLY) inhibitor used to treat hypercholesterolemia. We studied the anti-steatotic effect of BemA, and the mechanisms involved, in a model of fatty liver in female rats obtained through the administration of a high-fat diet supplemented with liquid fructose (HFHFr) for three months. In the third month, a group of rats was treated with BemA (30 mg/kg/day) by gavage. Plasma analytes, liver histology, adiposity, and the expression of key genes controlling fatty acid metabolism were determined, and PPAR agonism was explored by using luciferase reporter assays. Our results showed that, compared to HFHFr, BemA-treated rats exhibited lower body weight, higher liver/body weight, and reduced hepatic steatosis. In addition to ACLY inhibition, we found three novel mechanisms that could account for the anti-steatotic effect: (1) reduction of liver ketohexokinase, leading to lower fructose intake and reduced de novo lipogenesis; (2) increased expression of patatin-like phospholipase domain-containing protein 3, a protein related to the export of liver triglycerides to blood; and (3) PPARα agonist activity, leading to increased hepatic fatty acid ß-oxidation. In conclusion, BemA may represent a novel approach to treat hepatic steatosis, and therefore to avoid progression to advanced stages of non-alcoholic fatty liver disease.

16.
Mol Nutr Food Res ; 66(7): e2101115, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35124887

RESUMEN

SCOPE: The aim of this study is to delineate the contribution of dietary saturated fatty acids (FA) versus liquid fructose to fatty liver and hypertriglyceridemia. METHODS AND RESULTS: Three groups of female rats are maintained for 3 months in standard chow (CT); High-fat diet (46.9% of fat-derived calories, rich in palmitic and stearic FA, HFD); and HFD with 10% w/v fructose in drinking water (HFHFr). Zoometric parameters, plasma biochemistry, and liver Oil-Red O (ORO) staining, lipidomics, and expression of proteins involved in FA metabolism are analyzed. Both diets increase ingested calories without modifying body weight. Only the HFHFr diet increases liver triglycerides (x11.0), with hypertriglyceridemia (x1.7) and reduces FA ß-oxidation (x0.7), and increases liver FA markers of DNL (de novo lipogenesis). Whereas HFD livers show a high content of ceramides, HFHFr samples show unchanged ceramides, and an increase in diacylglycerols. Only the HFHFr diet leads to a marked increase in the expression of enzymes involved in DNL and triglyceride metabolism, such as carbohydrate response element binding protein ß (ChREBPß, x3.2), a transcription factor that regulates DNL, and patatin-like phospholipase domain-containing 3 (PNPLA3, x2.6), a lipase that mobilizes stored triglycerides for VLDL secretion. CONCLUSION: The addition of liquid-fructose to dietary FA is determinant in liver steatosis and hypertriglyceridemia production, through increased DNL and PNPLA3 expression, and reduced FA catabolism.


Asunto(s)
Hígado Graso , Hipertrigliceridemia , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Fructosa/efectos adversos , Fructosa/metabolismo , Hipertrigliceridemia/etiología , Lipogénesis/fisiología , Hígado/metabolismo , Ratas , Factores de Transcripción/metabolismo , Triglicéridos
17.
Toxicol Appl Pharmacol ; 251(1): 32-40, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21122807

RESUMEN

Consumption of beverages that contain fructose favors the increasing prevalence of metabolic syndrome alterations in humans, including non-alcoholic fatty liver disease (NAFLD). Although the only effective treatment for NAFLD is caloric restriction and weight loss, existing data show that atorvastatin, a hydroxymethyl-glutaryl-CoA reductase inhibitor, can be used safely in patients with NAFLD and improves hepatic histology. To gain further insight into the molecular mechanisms of atorvastatin's therapeutic effect on NAFLD, we used an experimental model that mimics human consumption of fructose-sweetened beverages. Control, fructose (10% w/v solution) and fructose+atorvastatin (30 mg/kg/day) Sprague-Dawley rats were sacrificed after 14 days. Plasma and liver tissue samples were obtained to determine plasma analytes, liver histology, and the expression of liver proteins that are related to fatty acid synthesis and catabolism, and inflammatory processes. Fructose supplementation induced hypertriglyceridemia and hyperleptinemia, hepatic steatosis and necroinflammation, increased the expression of genes related to fatty acid synthesis and decreased fatty acid ß-oxidation activity. Atorvastatin treatment completely abolished histological signs of necroinflammation, reducing the hepatic expression of metallothionein-1 and nuclear factor kappa B binding. Furthermore, atorvastatin reduced plasma (x 0.74) and liver triglyceride (x 0.62) concentrations, decreased the liver expression of carbohydrate response element binding protein transcription factor (x 0.45) and its target genes, and increased the hepatic activity of the fatty acid ß-oxidation system (x 1.15). These effects may be related to the fact that atorvastatin decreased the expression of fructokinase (x 0.6) in livers of fructose-supplemented rats, reducing the metabolic burden on the liver that is imposed by continuous fructose ingestion.


Asunto(s)
Carbohidratos de la Dieta/metabolismo , Fructoquinasas/metabolismo , Fructosa/metabolismo , Hepatitis/prevención & control , Ácidos Heptanoicos/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hígado/efectos de los fármacos , Pirroles/farmacología , Animales , Atorvastatina , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Ácidos Grasos/metabolismo , Hígado Graso/enzimología , Hígado Graso/etiología , Hígado Graso/genética , Hígado Graso/patología , Hígado Graso/prevención & control , Regulación de la Expresión Génica/efectos de los fármacos , Hepatitis/enzimología , Hepatitis/etiología , Hepatitis/genética , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/enzimología , Hipertrigliceridemia/etiología , Proteínas I-kappa B/metabolismo , Mediadores de Inflamación/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Hígado/enzimología , Hígado/patología , Masculino , Metalotioneína/metabolismo , FN-kappa B/metabolismo , Necrosis , Enfermedad del Hígado Graso no Alcohólico , Oxidación-Reducción , Fosforilación , Ratas , Ratas Sprague-Dawley , Triglicéridos/metabolismo
18.
Food Nutr Res ; 652021.
Artículo en Inglés | MEDLINE | ID: mdl-34650394

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has increased over the last decades and may evolve into hepatocellular carcinoma (HCC). As HCC is challenging to treat, knowledge on the modifiable risk factors for NAFLD/HCC (e.g. hyper caloric diets rich in fructose) is essential. OBJECTIVE AND DESIGN: We used a model of diethyl nitrosamine-induced hepatocarcinogenesis to investigate the liver cancer-promoting effects of a diet supplemented with 10% liquid fructose, administered to male and female rats for 11 months. A subset of the fructose-supplemented rats received resveratrol (RVT) in the last 4 months of treatment. RESULTS AND DISCUSSION: Rat livers showed no de visu or histological evidence of liver tumorigenesis. However, we observed metabolic abnormalities that could be related to cancer development mainly in the female fructose-supplemented rats, such as increases in weight, adiposity and hepatic triglyceride levels, as well as hyperglycaemia, hyperuricemia, hyperleptinemia and a reduced insulin sensitivity index, which were partially reversed by RVT. Therefore, we performed a targeted analysis of 84 cancer-related genes in the female liver samples, which revealed expression changes associated with cancer-related pathways. Analysis of individual genes indicated that some changes increased the risk of hepatocarcinogenesis (Sfrp2, Ccl5, Socs3, and Gstp1), while others exerted a protective/preventive effect (Bcl2 and Cdh1). CONCLUSION: Our data clearly demonstrate that chronic fructose supplementation, as the sole dietary intervention, does not cause HCC development in rats.

19.
Mol Nutr Food Res ; 65(11): e2100111, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33870623

RESUMEN

SCOPE: Interventions that boost NAD+ availability are of potential therapeutic interest for obesity treatment. The potential of nicotinamide (NAM), the amide form of vitamin B3 and a physiological precursor of nicotinamide adenine dinucleotide (NAD)+ , in preventing weight gain has not previously been studied in vivo. Other NAD+ precursors have been shown to decrease weight gain; however, their impact on adipose tissue is not addressed. METHODS AND RESULTS: Two doses of NAM (high dose: 1% and low dose: 0.25%) are given by drinking water to C57BL/6J male mice, starting at the same time as the high-fat diet feeding. NAM supplementation protects against diet-induced obesity by augmenting global body energy expenditure in C57BL/6J male mice. The manipulation markedly alters adipose morphology and metabolism, particularly in inguinal (i) white adipose tissue (iWAT). An increased number of brown and beige adipocyte clusters, protein abundance of uncoupling protein 1 (UCP1), mitochondrial activity, adipose NAD+ , and phosphorylated AMP-activated protein kinase (P-AMPK) levels are observed in the iWAT of treated mice. Notably, a significant improvement in hepatic steatosis, inflammation, and glucose tolerance is also observed in NAM high-dose treated mice. CONCLUSION: NAM influences whole-body energy expenditure by driving changes in the adipose phenotype. Thus, NAM is an attractive potential treatment for preventing obesity and associated complications.


Asunto(s)
Tejido Adiposo Blanco/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Niacinamida/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos Beige/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones Endogámicos C57BL , Niacinamida/administración & dosificación , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/etiología , Obesidad/prevención & control , Aumento de Peso/efectos de los fármacos
20.
Nutrients ; 12(11)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33113993

RESUMEN

Non-alcoholic fatty liver disease is a highly prevalent condition without specific pharmacological treatment, characterized in the initial stages by hepatic steatosis. It was suggested that lipid infiltration in the liver might be reduced by caffeine through anti-inflammatory, antioxidative, and fatty acid metabolism-related mechanisms. We investigated the effects of caffeine (CAF) and green coffee extract (GCE) on hepatic lipids in lean female rats with steatosis. For three months, female Sprague-Dawley rats were fed a standard diet or a cocoa butter-based high-fat diet plus 10% liquid fructose. In the last month, the high-fat diet was supplemented or not with CAF or a GCE, providing 5 mg/kg of CAF. Plasma lipid levels and the hepatic expression of molecules involved in lipid metabolism were determined. Lipidomic analysis was performed in liver samples. The diet caused hepatic steatosis without obesity, inflammation, endoplasmic reticulum stress, or hepatic insulin resistance. Neither CAF nor GCE alleviated hepatic steatosis, but GCE-treated rats showed lower hepatic triglyceride levels compared to the CAF group. The GCE effects could be related to reductions of hepatic (i) mTOR phosphorylation, leading to higher nuclear lipin-1 levels and limiting lipogenic gene expression; (ii) diacylglycerol levels; (iii) hexosylceramide/ceramide ratios; and (iv) very-low-density lipoprotein receptor expression. In conclusion, a low dose of CAF did not reduce hepatic steatosis in lean female rats, but the same dose provided as a green coffee extract led to lower liver triglyceride levels.


Asunto(s)
Cafeína/administración & dosificación , Café , Suplementos Dietéticos , Enfermedad del Hígado Graso no Alcohólico/terapia , Extractos Vegetales/administración & dosificación , Animales , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta , Modelos Animales de Enfermedad , Femenino , Fructosa/administración & dosificación , Resistencia a la Insulina , Metabolismo de los Lípidos , Lípidos/sangre , Lipogénesis/efectos de los fármacos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Ratas , Ratas Sprague-Dawley , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA