RESUMEN
BACKGROUND: Li-Fraumeni syndrome (LFS) is an autosomal dominant hereditary cancer syndrome caused by pathogenic variants in the gene TP53. This gene codes for the P53 protein, a crucial player in genomic stability, which functions as a tumor suppressor gene. Individuals with LFS frequently develop multiple primary tumors at a young age, such as soft tissue sarcomas, breast cancer, and brain tumors. CASE PRESENTATION: A 38 years-old female with a history of femur osteosarcoma, ductal carcinoma of the breast, high-grade breast sarcoma, pleomorphic sarcoma of the left upper limb, infiltrating lobular carcinoma of the breast, gastric adenocarcinoma, leiomyosarcoma of the right upper limb, and high-grade pleomorphic renal sarcoma. Complete molecular sequencing of the TP53 gene showed c.586 C > T (p.R196X) in exon 6, which is a nonsense mutation that produces a shorter and malfunctioning P53. Family history includes advanced father's age at the time of conception (75 years), which has been associated with an increased risk of de novo germline mutations. The patient had seven paternal half-siblings with no cancer history. The patient received multiple treatments including surgery, systemic therapy, and radiotherapy, but died at the age of 38. CONCLUSIONS: Advanced paternal age is a risk factor to consider when hereditary cancer syndrome is suspected. Early detection of hereditary cancer syndromes and their multi-disciplinary surveillance and treatment is important to improve clinical outcomes for these patients. Further investigation of the relationship between the pathogenic variant of TP53 and its phenotype may guide the stratification of surveillance and treatment.
RESUMEN
We delineated and analyzed directly oriented paralogous low-copy repeats (DP-LCRs) in the most recent version of the human haploid reference genome. The computationally defined DP-LCRs were cross-referenced with our chromosomal microarray analysis (CMA) database of 25,144 patients subjected to genome-wide assays. This computationally guided approach to the empirically derived large data set allowed us to investigate genomic rearrangement relative frequencies and identify new loci for recurrent nonallelic homologous recombination (NAHR)-mediated copy-number variants (CNVs). The most commonly observed recurrent CNVs were NPHP1 duplications (233), CHRNA7 duplications (175), and 22q11.21 deletions (DiGeorge/velocardiofacial syndrome, 166). In the â¼25% of CMA cases for which parental studies were available, we identified 190 de novo recurrent CNVs. In this group, the most frequently observed events were deletions of 22q11.21 (48), 16p11.2 (autism, 34), and 7q11.23 (Williams-Beuren syndrome, 11). Several features of DP-LCRs, including length, distance between NAHR substrate elements, DNA sequence identity (fraction matching), GC content, and concentration of the homologous recombination (HR) hot spot motif 5'-CCNCCNTNNCCNC-3', correlate with the frequencies of the recurrent CNVs events. Four novel adjacent DP-LCR-flanked and NAHR-prone regions, involving 2q12.2q13, were elucidated in association with novel genomic disorders. Our study quantitates genome architectural features responsible for NAHR-mediated genomic instability and further elucidates the role of NAHR in human disease.
Asunto(s)
Alelos , Trastornos de los Cromosomas/genética , Variaciones en el Número de Copia de ADN , Enfermedades Genéticas Congénitas/genética , Recombinación Homóloga , Proteínas Adaptadoras Transductoras de Señales/genética , Composición de Base , Deleción Cromosómica , Duplicación Cromosómica , Proteínas del Citoesqueleto , Genoma Humano , Humanos , Proteínas de la Membrana/genética , Motivos de Nucleótidos , Receptor Nicotínico de Acetilcolina alfa 7/genéticaRESUMEN
Introduction: The CYLD cutaneous syndrome is characterised by the appearance of multiple skin tumours, including cylindromas, spiradenomas, trichoepitheliomas and basal cell adenomas of the salivary gland and less frequently pulmonary cylindromas. The lesions appear in the second decade of life, typically present as single lesions, located mainly on the face and head and progressively increase in number, potentially affecting the torso, groin and axillae. Although lesions can affect both men and women, a higher frequency of affected women has been described. Case presentation: CYLD cutaneous syndrome is caused by pathogenic variants in the CYLD gene, following an autosomal dominant inheritance pattern. We present the first Colombian case of a family affected by CYLD cutaneous syndrome, spanning three generations and characterised by early onset of skin lesions. This syndrome was molecularly confirmed by next-generation sequencing (NGS), reveling a heterozygous frameshift variant in the CYLD gene, specifically the type NM_015247.2 c.2291_2295delAACTA p.Lys764Ilefs*2, which was subsequently confirmed by Sanger sequencing. Conclusion: Understanding the complex interplay of genetic, epigenetic and environmental factors in the malignant transformation of cylindroma to squamous eccrine ductal carcinoma is crucial for developing targeted therapies and improving patient outcomes. Key messages: The CYLD cutaneous syndrome in a Colombian family.
RESUMEN
OBJECTIVES: This article presents an analysis of the traffic-calming effects of bus rapid transit (BRT) by studying changes to motor vehicle speeds before and after implementation of Albuquerque Rapid Transit (ART) infrastructure in Albuquerque, New Mexico. METHODS: While ART construction was completed in spring 2018, the BRT buses did not operate until December 2019; providing a unique opportunity to explore the influence of BRT infrastructure sans BRT buses (i.e., to tease apart the effects of BRT infrastructure and operations). We used validated data from StreetLight InSight to compare before/after changes to average motor vehicle speeds and 85th percentile motor vehicle speeds at 46 ART sites and 36 control sites. RESULTS: Findings suggest that infrastructure associated with BRT systems can improve traffic safety by reducing vehicle speeds. Speed decreases at the ART sites were especially strong in terms of 85th percentile decreases, suggesting that the BRT infrastructure is especially effective at limiting excessive speeding. Motor vehicle 85th-percentile speeds along the ART corridor were reduced by 11.5% (compared to a 5.8% decrease at control sites). The 85th-percentile speeds at the ART sites decreased from 32.3 mph to 28.6 mph, which is an especially important range for vulnerable road-user safety outcomes. While ART intersections saw the largest decreases in absolute speeds (a reduction of 4.1 mph in 85th-percentile speeds), ART mid-block sites had larger decreases relative to the control mid-block sites (decreases in 85th-percentile speeds were 73.7% greater at ART mid-block sites than at control mid-block sites). BRT-related lane reductions were linked with particularly strong speed reductions; there were 85th-percentile speed reductions of 4.1 mph (12.6%) when general vehicle lanes were removed versus 2.2 mph (7.8%) when lanes were not removed. CONCLUSIONS: Speed reductions were experienced across the ART corridor even though 87.0% of BRT locations did not have a change in posted speed limit, suggesting that physical changes to the roadway associated with BRT were impactful in terms of speed reductions and in turn could possibly promote traffic injury prevention by decreasing the number and severity of crashes.
RESUMEN
BACKGROUND: Few reports describe the yield of postmortem genetic testing from medical examiners' offices or correlate genetic test results with autopsy-confirmed phenotypes from a large cohort. OBJECTIVES: To report results from cardiomyopathy- and cardiac arrhythmia-associated genetic testing in conjunction with autopsy findings of cases investigated at the United States' largest medical examiner office. METHODS: Postmortem cases tested from 2015 to 2022 with a cardiomyopathy- and cardiac arrhythmia-associated gene panel were reviewed. American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines were used to classify variant pathogenicity. Correlations of pathogenic/likely pathogenic variants (P/LPVs) with cardiac pathology were evaluated. RESULTS: The cohort included 1107 decedents of diverse ages and ethnicities. P/LPVs were detected in 87 (7.9%) cases, with 73 and 14 variants in cardiomyopathy and cardiac arrhythmia genes, respectively. Variants of uncertain significance were detected in 437 (39.5%) cases. The diagnostic yield (percentage of P/LPV) in decedents with cardiomyopathy (26.1%) was significantly higher than those without (P<.0001). The diagnostic yield was significantly lower in infants (0.7%) than older age groups (ranging from 1 to 74 years old, 5.7%-25.9%), which had no statistical difference between their yields. The diagnostic yields by cardiac autopsy findings were 54.0% for hypertrophic cardiomyopathy, 47.1% for arrhythmogenic cardiomyopathy, 20.0% for myocardial fibrosis, 19.0% for dilated cardiomyopathy, and 11.3% for myocarditis. Most P/LPVs were in MYBPC3, TTN, PKP2, SCN5A, MYH7, and FLNC. Ten P/LPVs were novel. CONCLUSIONS: Our results support the importance of performing postmortem genetic testing on decedents of all ages with cardiomyopathy, cardiac lesions insufficient to diagnosis a specific cardiomyopathy (e.g., myocardial fibrosis), and myocarditis. Combined postmortem cardiac examination and genetic analysis are advantageous in accurately determining the underlying cause of death and informing effective clinical care of family members.
Asunto(s)
Arritmias Cardíacas , Autopsia , Cardiomiopatías , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Fenotipo , Humanos , Persona de Mediana Edad , Femenino , Masculino , Adulto , Adolescente , Niño , Anciano , Adulto Joven , Lactante , Preescolar , Cardiomiopatías/genética , Cardiomiopatías/patología , Arritmias Cardíacas/genética , Arritmias Cardíacas/diagnóstico , Anciano de 80 o más Años , Recién Nacido , Valor Predictivo de las Pruebas , Causas de Muerte , Estados Unidos/epidemiología , Estudios RetrospectivosRESUMEN
BACKGROUND: Sudden deaths due to thoracic aortic dissection or rupture (TADR) are often investigated by forensic pathologists in the United States. Up to a quarter of reported TADR result from a highly penetrant autosomal dominant single gene variant. Testing genes associated with familial TADR provides an underlying etiology for the cause of death and informs effective sudden death prevention for at-risk family members. At the New York City Office of Chief Medical Examiner (NYC-OCME), TADR cases are routinely tested by the in-house, CAP-accredited Molecular Genetics Laboratory. In this retrospective study, TADR and cardiovascular cases were reviewed to understand the burden of TADR in sudden deaths, value of molecular diagnostic testing in TADR, and genotype-phenotype correlations in a demographically diverse TADR cohort. METHODS: Between July 2019 and June 2022, cases with in-house cardiovascular genetic testing at NYC-OCME were retrospectively reviewed. Twenty genes associated with familial TADR were analyzed using high throughput massive parallel sequencing on postmortem tissues or bloodspot cards. Variant interpretation was conducted according to ACMG/AMP guidelines. RESULTS: A total of 1078 cases were tested for cardiovascular genetic conditions, of which 34 (3%) had TADR. Eight of those TADR cases had a pathogenic or likely pathogenic variant (P/LPV), 4 had a variant of uncertain significance (VUS), and 22 cases were negative for variants in TADR genes. The molecular diagnostic yield using the TADR subpanel was 23.5%. The genes with the greatest prevalence of P/LPV were FBN1 (6), followed by TGFBR2 (2), TGFBR1 (1), and MYLK (1). Highly penetrant P/LPV in TGFBR2, FBN1, and TGFBR1 were found in TADR individuals who died younger than 34 years old. Two P/LPV in FBN1 were secondary findings unrelated to cause of death. P/LPV in FBN1 included five truncating variants located in the N-terminal domains and one missense variant involved in the disulfide bonds of the EGF-like domain. All P/LPV in TGFBR1 and TGFBR2 were missense or in-frame deletion variants located in the protein kinase catalytic domain. Three variants were first reported in this study. CONCLUSIONS: Molecular testing of familial TADR-associated genes is a highly effective tool to identify the genetic cause of TADR sudden deaths and benefits surviving at-risk families.
Asunto(s)
Disección Aórtica , Enfermedades Cardiovasculares , Disección de la Aorta Torácica , Humanos , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptor Tipo I de Factor de Crecimiento Transformador beta , Estudios Retrospectivos , Disección Aórtica/genética , Muerte Súbita , Biología MolecularRESUMEN
Background: Protein MUTYH, encoded by the gene MUTYH, is an important mismatch repair enzyme in the base-excision repair pathway of DNA repair. When genetically altered, different neoplastic conditions can arise. One of the widely known syndromes associated with MUTYH mutations is MUTYH-associated polyposis, a form of familial colorectal cancer syndrome. MUTYH may also be a driver in other familial cancer syndromes, as well as breast cancer and spontaneous cancer cases. However, some controversies about the role of these alterations in oncogenesis remain, especially when affected in a heterozygous way. Most available data on MUTYH mutations are on Caucasian patients. Material and Methods: We analyzed a small cohort of non-Caucasian, Colombian cancer patients with MUTYH germline heterozygous mutations, clinical features suggestive of familial cancer, and extensive genetic studies with no other mutations and without MUTYH-associated polyposis. Conclusion: With this case series, we intended to provide important data for the understanding of MUTYH as a possible driver of familial cancer, even when only heterozygous mutations are found.
RESUMEN
BACKGROUND: Becker's type myotonia congenita is an autosomal recessive nondystrophic skeletal muscle disorder characterized by muscle stiffness and the inability of muscle relaxation after voluntary contraction. It is caused by mutations in the CLCN1 gene, which encodes for a chloride channel mainly expressed in the striated muscle. Most cases have been reported in the European population, and only mexiletine has demonstrated a randomized placebo-controlled, double-blinded effectiveness. CASE PRESENTATION: We present two male siblings from Colombia with Latino ancestry, without parental consanguinity, with myotonia during voluntary movements, muscle hypertrophy of lower extremities, transient weakness, and severe muscle fatigue after exercise from three years of age. A genetic panel for dystrophic muscle disorders and a muscle biopsy were both negative. Genetic testing was performed in their second decade of life. Both patients' exomic sequencing test reported the mutation c.1129C >T (p.Arg377*) affecting exon 10 of the CLCN1, generating a premature stop codon. This mutation was described as pathogenic and observed in only one other patient in the United Kingdom. CONCLUSION: To our knowledge, these are the first cases of Becker's type myotonia congenita reported in Colombia. Increasing awareness of healthcare providers for this type of disease in the region could lead to the identification of undiagnosed patients. Limited availability of medical geneticists as well as genetic testing may be the cause of the lack of previous description of cases, in addition to the delay in the diagnosis of the patients. Further epidemiological studies can reveal underdiagnosed myotonias in the country and in the Latin-American region.
RESUMEN
For archived cases of previously young healthy individuals where cause of sudden death remains undetermined, formalin fixed paraffin-embedded tissues (FFPE) samples are often the only biological resource available for molecular testing. We aim to ascertain the validity of postmortem molecular analysis of 95 cardiac genes using the FFPE samples routinely processed in the offices of medical examiners - typical fixation time in formalin ranges from days to months. The study was conducted in the College of American Pathologists accredited Molecular Genetics Laboratory within the City of New York Office of Chief Medical Examiner. Twelve cases, with FFPE samples and corresponding non-formalin fixed samples (RNAlater-preserved tissues or bloodstain card), were chosen for testing results comparison. The methods of extracting DNA from FFPE samples using Covaris, Qiagen, and Promega products showed comparable results. The quality of the extracted DNA, the target-enriched DNA libraries of 95 cardiac genes using HaloPlex Target Enrichment system by Agilent Technologies, and sequencing results using Illumina Miseq instrument were evaluated. Compared to the sequencing results of the nonfixed samples, the FFPE samples were categorized into three groups: 1) Group 1 samples fixed in formalin 2-6 days, had greater than 55 % sequencing regions ≥30x and 94%-100% variant concordance. 2) Group 2 samples fixed in formalin for 8 days, showed intra-sample sequencing variations: the surface tissues showed 25%-27% extra variants (false positive) and 8.1%-9.7% missing variants (false negative), whereas the repeated core tissues showed reduced extra variants to 1.6 % and the false negative error was unchanged. 3) Group 3 samples fixed in formalin 29-136 days, had 2-55 % sequencing regions ≥30x, up to 52.2 % missed variants and up to 6.3 % extra variants. All reportable variants (pathogenic, likely pathogenic or variant of uncertain significance) identified in the nonfixed samples were also identified in FFPE, albeit three variants had low confidence variant calling. In summary, our study showed that postmortem molecular diagnostic testing using FFPE samples routinely processed by the medical examiners should be cautioned, as they are replete with false positive and negative results, particularly when sample fixation time is longer than 8 days. Saving non-formalin fixed samples for high fidelity molecular analysis is strongly encouraged.
Asunto(s)
Muerte Súbita Cardíaca/etiología , Patologia Forense/métodos , Formaldehído , Técnicas de Diagnóstico Molecular/normas , Adhesión en Parafina , Fijación del Tejido , Fijadores , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , New York/epidemiología , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Factores de TiempoRESUMEN
BACKGROUND: Multiple primary malignant neoplasms are not frequent but are increasing in incidence. Some of them are associated with genetic syndromes such as von Hippel-Lindau syndrome and Li-Fraumeni syndrome. Dedifferentiated liposarcoma is one of the rarest soft tissue tumors, and clear cell renal carcinoma is the most frequent kidney cancer. The concomitant presence of these tumors is extremely rare; however, some cases have been reported, none of them presenting with liposarcoma of the limbs. We report an interesting case of a patient with synchronous multiple primary tumors presenting with a very rare liposarcoma associated with renal cell carcinoma (a very rare association). A review of the literature and a collection of similar cases published previously are also provided. CASE PRESENTATION: We report a case of a 62-year-old Hispanic man who presented to our institution with a left thigh mass compatible with dedifferentiated liposarcoma synchronous with metastatic clear cell renal carcinoma. Multiple treatment lines were provided with no response, with a further metastatic transformation. Genetic analysis by liquid biopsy showed some mutations that were not susceptible to targeted therapy. At the time of this report, the patient is undergoing palliative care because his nonresponsive metastatic disease persists. CONCLUSIONS: We present the first reported case of clear cell renal carcinoma synchronous with dedifferentiated liposarcoma of a limb. The association between renal cell carcinoma and dedifferentiated liposarcoma is unusual, and there are few reports of this presentation in the literature. More research about these tumors along with genetic tests needs to be performed to seek a better understanding of the fundamental basis of this rare association.
Asunto(s)
Carcinoma de Células Renales/complicaciones , Neoplasias Renales/complicaciones , Liposarcoma/complicaciones , Neoplasias Primarias Múltiples , Neoplasias de los Tejidos Blandos/complicaciones , Carcinoma de Células Renales/genética , Humanos , Neoplasias Renales/genética , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia/terapia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Muslo/diagnóstico por imagen , Muslo/patologíaRESUMEN
Hypertriglyceridemia is a common disease with only 2% of cases exhibiting monogenic mutations. Familial chylomicronemia syndrome (FCS) is a rare genetic condition associated with recurrent and severe episodes of pancreatitis and is mainly caused by mutations in the LPL gene, with few cases related to abnormal function of apolipoprotein C-II. This is a 50-year-old female with a past medical history of arterial hypertension, miscarriage and recurrent pancreatitis. In the last four years, her triglycerides and lipase concentration reached >3000 mg/dL and >700 U/L, respectively. The patient was not responsive to statins, fibrates, or tetrahydrolipstatin. A novel homozygous frameshift mutation on exon 3 of the APOC2 gene was detected, c.133_134delTC. Subsequent Sanger sequencing confirmed that three first-degree relatives were carriers of the same mutation. To the best of our knowledge, we are reporting the first Colombian patient with FCS due to an APOC2 mutation. We propose that this mutation caused recurrent hypertriglyceridemic pancreatitis.
RESUMEN
Our aim is to characterize predicted protein-truncating variants (PTVs) in MYBPC3, the gene most commonly associated with hypertrophic cardiomyopathy (HCM), found in a series of autopsied HCM cases after sudden unexpected cardiac death. All cases underwent death scene investigation, gross and microscopic autopsies, toxicological testing, a review of medical records, and a molecular analysis of 95 cardiac genes. We found four pathogenic PTVs in MYBPC3 among male decedents. All variants were previously submitted to ClinVar without phenotype details. Two PTVs were located in the cardiac-specific myosin S2-binding (M) motif at the N-terminus of the MYBPC3-encoded cMyBP-C protein, and two PTVs were in the non-cardiac-specific C-terminus of the protein. The carriers of two cardiac-specific M-motif PTVs died at age 38â¯years; their heart weight (HW, g) and body mass index (BMI, kg/m2) ratio were 34.90 (890/25.5) and 23.56 (980/41.6), respectively. In contrast, the carriers of two non-cardiac-specific C-terminal PTVs died at age 57 and 67â¯years, respectively; their HW and BMI ratio were 14.71 (450/30.6) and 13.98 (600/42.9), respectively. A detailed three-generation family study was conducted in one case. This study showed age-at-death variations among MYBPC3 PTVs carriers in adult males.
Asunto(s)
Cardiomiopatía Hipertrófica/genética , Proteínas Portadoras/genética , Muerte Súbita Cardíaca/etiología , Mutación , Adulto , Factores de Edad , Anciano , Autopsia , Cardiomiopatía Hipertrófica/patología , Causas de Muerte , Análisis Mutacional de ADN , Muerte Súbita Cardíaca/patología , Femenino , Predisposición Genética a la Enfermedad , Herencia , Humanos , Masculino , Persona de Mediana Edad , Linaje , FenotipoRESUMEN
BACKGROUND: Molecular testing of the deceased (Molecular Autopsy) is an overlooked area in the United States healthcare system and is not covered by medical insurance, leading to ineffective care for surviving families of thousands of sudden unexpected natural deaths each year. We demonstrated the precision management of surviving family members through the discovery of a novel de novo pathogenic variant in a decedent. METHODS: Forensic investigation and molecular autopsy were performed on an 18-year-old female who died suddenly and unexpectedly. Co-segregation family study of the first-degree relatives and functional characterization of the variant were conducted. FINDINGS: We identified a novel nonsense variant, NP_000229.1:p.Gln1068Ter, in the long QT syndrome type II gene KCNH2 in the decedent. This finding correlated with her ante-mortem electrocardiograms. Patch clamp functional studies using transfected COS-7 cells show that hERG-ΔQ1068 has a mixed phenotype, with both gain- (negative voltage shift of steady-state activation curve, the positive shift of the steady-state inactivation curve, and accelerated activation) and loss-of function (reduced current density, reduced surface expression and accelerated deactivation) hallmarks. Loss of cumulative activation during rapid pacing demonstrates that the loss-of-function phenotype predominates. The wild-type channel did not rescue the hERG-ΔQ1068 defects, demonstrating haploinsufficiency of the heterozygous state. Targeted variant testing in the family showed that the variant in KCNH2 arose de novo, which eliminated the need for exhaustive genome testing and annual cardiac follow-up for the parents and four siblings. INTERPRETATION: Molecular testing enables accurate determination of natural causes of death and precision care of the surviving family members in a time and cost-saving manner. We advocate for molecular autopsy being included under the healthcare coverage in US.
RESUMEN
The osteochondrodysplasias represent a heterogeneous group of cartilage and bone diseases. Among these, achondrogenesis 1B, atelosteogenesis type II, diastrophic dysplasia, and autosomal recessive multiple epiphyseal dysplasia are caused by mutations in the solute carrier family 26 (sulfate transporter), member 2 gene (SLC26A2). This group of osteochondrodysplasias shows a continuous spectrum of clinical variability and shares many features in common. Usually, it is difficult to distinguish clinically among these patients. To date, several efforts have been made to correlate mutations in the SLC26A2 gene with phenotypic severity in the patients. We report on a Mexican girl with diastrophic dysplasia presenting some unusual clinical and radiographic features that are usually observed in atelosteogenesis type II. Molecular analysis of the SLC26A2 gene in this patient showed compound heterozygosity for the R178X and R279W mutations. In this patient, the combination of a mild and a severe mutation has apparently led to an intermediate or transitional clinical picture, showing an apparent genotype-phenotype correlation.