Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319653

RESUMEN

Avoiding microbial contamination and biofilm formation on the surfaces of aircraft fuel tanks is a major challenge in the aviation industry. The inevitable presence of water in fuel systems and nutrients provided by the fuel makes an ideal environment for bacteria, fungi, and yeast to grow. Understanding how microbes grow on different fuel tank materials is the first step to control biofilm formation in aviation fuel systems. In this study, biofilms of Pseudomonas putida, a model Gram-negative bacterium previously found in aircraft fuel tanks, were characterized on aluminum 7075-T6 surfaces, which is an alloy used by the aviation industry due to favorable properties including high strength and fatigue resistance. Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray (EDX) showed that extracellular polymeric substances (EPS) produced by P. putida were important components of biofilms with a likely role in biofilm stability and adhesion to the surfaces. EDX analysis showed that the proportion of phosphorus with respect to nitrogen is higher in the EPS than in the bacterial cells. Additionally, different morphologies in biofilm formation were observed in the fuel phase compared to the water phase. Micro-Fourier transform infrared spectroscopy (micro-FTIR) analysis suggested that phosphoryl and carboxyl functional groups are fundamental for the irreversible attachment between the EPS of bacteria and the aluminum surface, by the formation of hydrogen bonds and inner-sphere complexes between the macromolecules and the aluminum surface. Based on the hypothesis that nucleic acids (particularly DNA) are an important component of EPS in P. putida biofilms, the impact of degrading extracellular DNA was tested. Treatment with the enzyme DNase I affected both water and fuel phase biofilms─with the cell structure disrupted in the aqueous phase, but cells remained attached to the aluminum coupons.

2.
Plant Cell ; 30(12): 3058-3073, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30413655

RESUMEN

Successful biotrophic plant pathogens can divert host nutrition toward infection sites. Here we describe how the protist Plasmodiophora brassicae establishes a long-term feeding relationship with its host by stimulating phloem differentiation and phloem-specific expression of sugar transporters within developing galls. Development of galls in infected Arabidopsis (Arabidopsis thaliana) plants is accompanied by stimulation of host BREVIS RADIX, COTYLEDON VASCULAR PATTERN, and OCTOPUS gene expression leading to an increase in phloem complexity. We characterized how the arrest of this developmental reprogramming influences both the host and the invading pathogen. Furthermore, we found that infection leads to phloem-specific accumulation of SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERS11 and 12 facilitating local distribution of sugars toward the pathogen. Utilizing Fourier-transform infrared microspectroscopy to monitor spatial distribution of carbohydrates, we found that infection leads to the formation of a strong physiological sink at the site of infection. High resolution metabolic and structural imaging of sucrose distributions revealed that sweet11 sweet12 double mutants are impaired in sugar transport toward the pathogen, delaying disease progression. This work highlights the importance of precise regulation of sugar partitioning for plant-pathogen interactions and the dependence of P brassicae's performance on its capacity to induce a phloem sink at the feeding site.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Floema/citología , Floema/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Enfermedades de las Plantas , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
3.
Langmuir ; 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34347486

RESUMEN

Attachment assays of a Pseudomonas isolate to fused silica slides showed that treatment with DNaseI significantly inhibited cellular adsorption, which was restored upon DNA treatment. These assays confirmed the important role of extracellular DNA (eDNA) adsorption to a surface. To investigate the eDNA adsorption mechanism, single-molecule force spectroscopy (SMFS) was used to measure the adsorption of eDNA to silicon surfaces in the presence of different concentrations of sodium and calcium ions. SMFS reveals that the work of adhesion required to remove calcium-bound eDNA from the silicon oxide surface is substantially greater than that for sodium. Molecular dynamics simulations were also performed, and here, it was shown that the energy gain in eDNA adsorption to a silicon oxide surface in the presence of calcium ions is small and much less than that in the presence of sodium. The simulations show that the length scales involved in eDNA adsorption are less in the presence of sodium ions than those in the presence of calcium. In the presence of calcium, eDNA is pushed above the surface cations, whereas in the presence of sodium ions, short-range interactions with the surface dominate. Moreover, SMFS data show that increasing [Ca2+] from 1 to 10 mM increases the adsorption of the cations to the silicon oxide surface and consequently enhances the Stern layer, which in turn increases the length scale associated with eDNA adsorption.

4.
Mycorrhiza ; 31(1): 69-83, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33200348

RESUMEN

Many plant species form symbioses with ectomycorrhizal fungi, which help them forage for limiting nutrients in the soil such as inorganic phosphate (Pi). The transcriptional responses to symbiosis and nutrient-limiting conditions in ectomycorrhizal fungal hyphae, however, are largely unknown. An artificial system was developed to study ectomycorrhizal basidiomycete Paxillus involutus growth in symbiosis with its host tree Pinus sylvestris at different Pi concentrations. RNA-seq analysis was performed on P. involutus hyphae growing under Pi-limiting conditions, either in symbiosis or alone. We show that Pi starvation and ectomycorrhizal symbiosis have an independent effect on the P. involutus transcriptome. Notably, low Pi availability induces expression of newly identified putative high-affinity Pi transporter genes, while reducing the expression of putative organic acid transporters. Additionally, low Pi availability induces a close transcriptional interplay between P and N metabolism. GTP-related signalling was found to have a positive effect in the maintenance of ectomycorrhizal symbiosis, whereas multiple putative cytochrome P450 genes were found to be downregulated, unlike arbuscular mycorrhizal fungi. We provide the first evidence of global transcriptional changes induced by low Pi availability and ectomycorrhizal symbiosis in the hyphae of P. involutus, revealing both similarities and differences with better-characterized arbuscular mycorrhizal fungi.


Asunto(s)
Micorrizas , Pinus sylvestris , Pinus , Basidiomycota , Micorrizas/genética , Fosfatos , Pinus sylvestris/genética , Simbiosis , Transcriptoma
5.
Plant J ; 97(4): 715-729, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30431210

RESUMEN

Plasmodiophora brassicae is a soil-borne biotroph whose life cycle involves reprogramming host developmental processes leading to the formation of galls on its underground parts. Formation of such structures involves modification of the host cell cycle leading initially to hyperplasia, increasing the number of cells to be invaded, followed by overgrowth of cells colonised by the pathogen. Here we show that P. brassicae infection stimulates formation of the E2Fa/RBR1 complex and upregulation of MYB3R1, MYB3R4 and A- and B-type cyclin expression. These factors were previously described as important regulators of the G2-M cell cycle checkpoint. As a consequence of this manipulation, a large population of host hypocotyl cells are delayed in cell cycle exit and maintained in the proliferative state. We also report that, during further maturation of galls, enlargement of host cells invaded by the pathogen involves endoreduplication leading to increased ploidy levels. This study characterises two aspects of the cell cycle reprogramming efforts of P. brassicae: systemic, related to the disturbance of host hypocotyl developmental programs by preventing cell cycle exit; and local, related to the stimulation of cell enlargement via increased endocycle activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Ciclo Celular/genética , Plasmodiophorida/patogenicidad , Proteínas de Arabidopsis/genética , Ciclo Celular/fisiología , División Celular/genética , División Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
6.
J Thromb Thrombolysis ; 47(2): 263-271, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30443817

RESUMEN

BACKGROUND: Four-factor PCC is the recommended standard of care for acute warfarin reversal but optimal dosing is unknown. We aim to show that a low-dose strategy is often adequate and may reduce the risk of thromboembolic events when compared to manufacturer-recommended dosing. METHODS: A weight-based dosing strategy of 15-25 units/kg was established as the institutional standard of care in May 2015. This retrospective, before-and-after cohort analysis included patients receiving 4F-PCC according to a manufacturer-recommended (n = 122) or a low-dose (n = 83) strategy. The primary efficacy outcome was a combination of INR reversal on first check and hemostatic efficacy at 24 h. RESULTS: Demographics, indications for warfarin, and presenting INR values were similar between the two groups. Patients in the manufacturer-recommended dose group received significantly more 4F-PCC than the low dose group (2110 units vs. 1530 units). More patients in the manufacturer-recommended dose group achieved the primary endpoint (75.4% vs. 61.4%), with more patients achieving the target INR on recheck in the manufacturer-recommended dose group (95.9% vs. 84.3%) and no difference in hemostatic efficacy between groups (79.5% vs. 74.7%). There was no difference in thromboembolic events at 72 h (4.1% vs. 1.2%) or at 30 days (8.2% vs. 4.8%). Significantly more patients in the manufacturer-recommended dose group died or were transferred to hospice care during hospitalization (21.3% vs. 9.6%). CONCLUSION: Utilization of a low-dose 4F-PCC strategy resulted in fewer patients achieving target INR reversal, but no difference in hemostatic efficacy, thromboembolic events, or survival.


Asunto(s)
Anticoagulantes , Factores de Coagulación Sanguínea/administración & dosificación , Hemorragia/tratamiento farmacológico , Hemostasis/efectos de los fármacos , Antagonistas de Heparina/administración & dosificación , Warfarina/antagonistas & inhibidores , Anciano , Anciano de 80 o más Años , Anticoagulantes/administración & dosificación , Anticoagulantes/efectos adversos , Factores de Coagulación Sanguínea/efectos adversos , Peso Corporal , Cálculo de Dosificación de Drogas , Monitoreo de Drogas/métodos , Femenino , Hemorragia/inducido químicamente , Hemorragia/diagnóstico , Antagonistas de Heparina/efectos adversos , Humanos , Relación Normalizada Internacional , Masculino , Modelos Biológicos , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Resultado del Tratamiento , Warfarina/administración & dosificación , Warfarina/efectos adversos
7.
Plant J ; 92(1): 147-162, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28742258

RESUMEN

Rhizosphere chemistry is the sum of root exudation chemicals, their breakdown products and the microbial products of soil-derived chemicals. To date, most studies about root exudation chemistry are based on sterile cultivation systems, which limits the discovery of microbial breakdown products that act as semiochemicals and shape microbial rhizosphere communities. Here, we present a method for untargeted metabolic profiling of non-sterile rhizosphere soil. We have developed an experimental growth system that enables the collection and analysis of rhizosphere chemicals from different plant species. High-throughput sequencing of 16SrRNA genes demonstrated that plants in the growth system support a microbial rhizosphere effect. To collect a range of (a)polar chemicals from the system, we developed extraction methods that do not cause detectable damage to root cells or soil-inhabiting microbes, thus preventing contamination with cellular metabolites. Untargeted metabolite profiling by UPLC-Q-TOF mass spectrometry, followed by uni- and multivariate statistical analyses, identified a wide range of secondary metabolites that are enriched in plant-containing soil, compared with control soil without roots. We show that the method is suitable for profiling the rhizosphere chemistry of Zea mays (maize) in agricultural soil, thereby demonstrating the applicability to different plant-soil combinations. Our study provides a robust method for the comprehensive metabolite profiling of non-sterile rhizosphere soil, which represents a technical advance towards the establishment of causal relationships between the chemistry and microbial composition of the rhizosphere.


Asunto(s)
Arabidopsis/metabolismo , Metabolómica/métodos , Microbiota , Exudados de Plantas/análisis , Zea mays/metabolismo , Arabidopsis/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Rizosfera , Suelo/química , Zea mays/química
8.
Plant J ; 92(6): 981-994, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28963748

RESUMEN

The pattern of cell division, growth and separation during leaf development determines the pattern and volume of airspace in a leaf. The resulting balance of cellular material and airspace is expected to significantly influence the primary function of the leaf, photosynthesis, and yet the manner and degree to which cell division patterns affect airspace networks and photosynthesis remains largely unexplored. In this paper we investigate the relationship of cell size and patterning, airspace and photosynthesis by promoting and repressing the expression of cell cycle genes in the leaf mesophyll. Using microCT imaging to quantify leaf cellular architecture and fluorescence/gas exchange analysis to measure leaf function, we show that increased cell density in the mesophyll of Arabidopsis can be used to increase leaf photosynthetic capacity. Our analysis suggests that this occurs both by increasing tissue density (decreasing the relative volume of airspace) and by altering the pattern of airspace distribution within the leaf. Our results indicate that cell division patterns influence the photosynthetic performance of a leaf, and that it is possible to engineer improved photosynthesis via this approach.


Asunto(s)
Arabidopsis/fisiología , Fotosíntesis/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Recuento de Células , División Celular , Proliferación Celular , Tamaño de la Célula , Ingeniería Genética , Células del Mesófilo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente
9.
Plant Physiol ; 170(3): 1655-74, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26813793

RESUMEN

Leaves are derived from heterotrophic meristem tissue that, at some point, must make the transition to autotrophy via the initiation of photosynthesis. However, the timing and spatial coordination of the molecular and cellular processes underpinning this switch are poorly characterized. Here, we report on the identification of a specific stage in rice (Oryza sativa) leaf development (P3/P4 transition) when photosynthetic competence is first established. Using a combined physiological and molecular approach, we show that elements of stomatal and vascular differentiation are coordinated with the onset of measurable light absorption for photosynthesis. Moreover, by exploring the response of the system to environmental perturbation, we show that the earliest stages of rice leaf development have significant plasticity with respect to elements of cellular differentiation of relevance for mature leaf photosynthetic performance. Finally, by performing an RNA sequencing analysis targeted at the early stages of rice leaf development, we uncover a palette of genes whose expression likely underpins the acquisition of photosynthetic capability. Our results identify the P3/P4 transition as a highly dynamic stage in rice leaf development when several processes for the initiation of photosynthetic competence are coordinated. As well as identifying gene targets for future manipulation of rice leaf structure/function, our data highlight a developmental window during which such manipulations are likely to be most effective.


Asunto(s)
Clorofila/metabolismo , Perfilación de la Expresión Génica/métodos , Oryza/genética , Fotosíntesis/genética , Hojas de la Planta/genética , Clorofila/química , Fluorescencia , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Luz , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Fotosíntesis/efectos de la radiación , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Estomas de Plantas/genética , Estomas de Plantas/metabolismo , Estomas de Plantas/ultraestructura , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/crecimiento & desarrollo , Haz Vascular de Plantas/metabolismo , Plastidios/genética , Plastidios/metabolismo , Plastidios/ultraestructura , Factores de Tiempo
10.
Neurocrit Care ; 27(3): 334-340, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28660341

RESUMEN

BACKGROUND: Prothrombin complex concentrates (PCCs) have become the first-line therapy for warfarin reversal in the setting of central nervous system (CNS) hemorrhage. Randomized, controlled studies comparing agents for warfarin reversal excluded patients with international normalized ratio (INR) <2, yet INR values of 1.6-1.9 are also associated with poor outcomes. METHODS: We retrospectively reviewed our use of a low-dose (15 units/kg) strategy of 4-factor PCC (4F-PCC) on warfarin reversal (INR 1.6-1.9) in the setting of both traumatic and spontaneous intracranial bleeding. RESULTS: A total of 21/134 (15.7%) patients with either spontaneous or traumatic intracranial hemorrhage presented with an INR value of 1.6-1.9. Nine patients (43%) presented with traumatic bleeding and 12 (57%) with spontaneous bleeding. The median (IQR) presenting INR was 1.8 (1.7, 1.9) which decreased to 1.3 (1.2, 1.3) following the administration of low-dose 4F-PCC (median dose = 1062 units; 15.2 units/kg). A total of 19/20 (95%) patients achieved a goal INR value of ≤1.5 on the first check following dosing and 17/20 (85%) achieved an INR value ≤1.3. One patient did not have follow-up INR testing due to withdrawal of life support. No patient experienced hematoma expansion within 48 h of 4F-PCC, and there were no thromboembolic events within 72 h of administration. CONCLUSIONS: The administration of low dose (15 units/kg) of 4F-PCC for urgent warfarin reversal in the setting of CNS hemorrhage was effective in correcting the INR in patients presenting with INR values of 1.6-1.9. Further assessment of low-dose PCC for urgent reversal of modest INR elevation is warranted.


Asunto(s)
Anticoagulantes/efectos adversos , Factores de Coagulación Sanguínea/farmacología , Hemorragia Intracraneal Traumática/tratamiento farmacológico , Hemorragias Intracraneales/tratamiento farmacológico , Evaluación de Resultado en la Atención de Salud , Warfarina/efectos adversos , Anciano , Anciano de 80 o más Años , Factores de Coagulación Sanguínea/administración & dosificación , Femenino , Humanos , Relación Normalizada Internacional , Hemorragias Intracraneales/inducido químicamente , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
11.
BMC Genomics ; 17: 272, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-27036196

RESUMEN

BACKGROUND: The protist Plasmodiophora brassicae is a soil-borne pathogen of cruciferous species and the causal agent of clubroot disease of Brassicas including agriculturally important crops such as canola/rapeseed (Brassica napus). P. brassicae has remained an enigmatic plant pathogen and is a rare example of an obligate biotroph that resides entirely inside the host plant cell. The pathogen is the cause of severe yield losses and can render infested fields unsuitable for Brassica crop growth due to the persistence of resting spores in the soil for up to 20 years. RESULTS: To provide insight into the biology of the pathogen and its interaction with its primary host B. napus, we produced a draft genome of P. brassicae pathotypes 3 and 6 (Pb3 and Pb6) that differ in their host range. Pb3 is highly virulent on B. napus (but also infects other Brassica species) while Pb6 infects only vegetable Brassica crops. Both the Pb3 and Pb6 genomes are highly compact, each with a total size of 24.2 Mb, and contain less than 2 % repetitive DNA. Clustering of genome-wide single nucleotide polymorphisms (SNP) of Pb3, Pb6 and three additional re-sequenced pathotypes (Pb2, Pb5 and Pb8) shows a high degree of correlation of cluster grouping with host range. The Pb3 genome features significant reduction of intergenic space with multiple examples of overlapping untranslated regions (UTRs). Dependency on the host for essential nutrients is evident from the loss of genes for the biosynthesis of thiamine and some amino acids and the presence of a wide range of transport proteins, including some unique to P. brassicae. The annotated genes of Pb3 include those with a potential role in the regulation of the plant growth hormones cytokinin and auxin. The expression profile of Pb3 genes, including putative effectors, during infection and their potential role in manipulation of host defence is discussed. CONCLUSION: The P. brassicae genome sequence reveals a compact genome, a dependency of the pathogen on its host for some essential nutrients and a potential role in the regulation of host plant cytokinin and auxin. Genome annotation supported by RNA sequencing reveals significant reduction in intergenic space which, in addition to low repeat content, has likely contributed to the P. brassicae compact genome.


Asunto(s)
Brassica/parasitología , Genoma de Protozoos , Interacciones Huésped-Parásitos/genética , Plasmodiophorida/genética , Arabidopsis , Productos Agrícolas/parasitología , Citocininas/metabolismo , ADN Protozoario/genética , Especificidad del Huésped , Ácidos Indolacéticos/metabolismo , Enfermedades de las Plantas/parasitología , Análisis de Secuencia de ARN , Transcriptoma
12.
Plant J ; 76(6): 914-29, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24118480

RESUMEN

The causal relationship between cell division and growth in plants is complex. Although altered expression of cell-cycle genes frequently leads to altered organ growth, there are many examples where manipulation of the division machinery leads to a limited outcome at the level of organ form, despite changes in constituent cell size. One possibility, which has been under-explored, is that altered division patterns resulting from manipulation of cell-cycle gene expression alter the physiology of the organ, and that this has an effect on growth. We performed a series of experiments on retinoblastoma-related protein (RBR), a well characterized regulator of the cell cycle, to investigate the outcome of altered cell division on leaf physiology. Our approach involved combination of high-resolution microCT imaging and physiological analysis with a transient gene induction system, providing a powerful approach for the study of developmental physiology. Our investigation identifies a new role for RBR in mesophyll differentiation that affects tissue porosity and the distribution of air space within the leaf. The data demonstrate the importance of RBR in early leaf development and the extent to which physiology adapts to modified cellular architecture resulting from altered cell-cycle gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Microtomografía por Rayos X/métodos , Antocianinas/análisis , Antocianinas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Ciclo Celular , Diferenciación Celular , Tamaño de la Célula , Clorofila/metabolismo , Genes Reporteros , Células del Mesófilo/citología , Células del Mesófilo/fisiología , Fenotipo , Complejo de Proteína del Fotosistema II/fisiología , Epidermis de la Planta/citología , Epidermis de la Planta/genética , Epidermis de la Planta/crecimiento & desarrollo , Epidermis de la Planta/fisiología , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Estomas de Plantas/citología , Estomas de Plantas/genética , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Interferencia de ARN , ARN Mensajero/genética
13.
Neurocrit Care ; 20(3): 466-9, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23595666

RESUMEN

BACKGROUND: Recombinant activated Factor VII (rFVIIa) can be used for rapid INR normalization in patients with warfarin-associated intracranial hemorrhage (WA-ICH); however, the optimal dose to normalize INR has not been established. METHODS: This is a retrospective review comparing two rFVIIa hospital protocols for WA-ICH [weight-based dose (80 mcg/kg) or fixed dose (2 mg)]. Primary endpoint was the percentage of patients with INR reversal (INR <1.3) at the next INR draw and the need for further doses of rFVIIa. Secondary endpoints included time to documented INR reversal and sustained INR normalization, morbidity, mortality, change in hematoma size, cost, and adverse drug reactions. RESULTS: Twenty-nine patients were included in each group. The weight-based group received a mean dose of 78.9 ± 21 mcg/kg versus 26.6 ± 8 mcg/kg in the fixed dose group. More patients in the fixed dose protocol achieved documented INR reversal than those in the weight-based group (92.6 vs 72.4 %, p = 0.19). The weight-based group achieved INR normalization in 229.5 [102, 331] minutes versus 165 [83, 447] minutes in the fixed dose group (p=0.02). Time to sustained INR normalization was similar in both groups. Four patients in the fixed dose group received an additional dose of 1 mg per hospital protocol. With the exception of medication acquisition cost savings of about $4,300 per patient who received fixed dose protocol, all other endpoints were similar between groups. CONCLUSIONS: A low, fixed dose of rFVIIa appears to be as effective as a high, weight-based dose in achieving INR normalization in patients with WA-ICH.


Asunto(s)
Factor VIIa/administración & dosificación , Hemorragias Intracraneales/inducido químicamente , Hemorragias Intracraneales/tratamiento farmacológico , Warfarina/efectos adversos , Anciano , Anciano de 80 o más Años , Anticoagulantes/efectos adversos , Relación Dosis-Respuesta a Droga , Femenino , Hemostáticos/administración & dosificación , Humanos , Relación Normalizada Internacional , Masculino , Persona de Mediana Edad , Proteínas Recombinantes/administración & dosificación , Estudios Retrospectivos
14.
Environ Sci Pollut Res Int ; 31(11): 16150-16163, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38319419

RESUMEN

Understanding anaerobic biodegradation of ether oxygenates beyond MTBE in groundwater is important, given that it is replaced by ETBE as a gasoline additive in several regions. The lack of studies demonstrating anaerobic biodegradation of ETBE, and its product TBA, reflects the relative resistance of ethers and alcohols with a tertiary carbon atom to enzymatic attack under anoxic conditions. Anaerobic ETBE- or TBA-degrading microorganisms have not been characterized. Only one field study suggested anaerobic ETBE biodegradation. Anaerobic (co)metabolism of ETBE or TBA was reported in anoxic microcosms, indicating their biodegradation potential in anoxic groundwater systems. Non-isotopic methods, such as the detection of contaminant loss, metabolites, or ETBE- and TBA-degrading bacteria are not sufficiently sensitive to track anaerobic biodegradation in situ. Compound- and position-specific stable isotope analysis provides a means to study MTBE biodegradation, but isotopic fractionation of ETBE has only been studied with a few aerobic bacteria (εC -0.7 to -1.7‰, εH -11 to -73‰) and at one anoxic field site (δ2H-ETBE +14‰). Similarly, stable carbon isotope enrichment (δ13C-TBA +6.5‰) indicated TBA biodegradation at an anoxic field site. CSIA and PSIA are promising methods to detect anaerobic ETBE and TBA biodegradation but need to be investigated further to assess their full potential at field scale.


Asunto(s)
Éteres de Etila , Agua Subterránea , Éteres Metílicos , Alcohol terc-Butílico , Anaerobiosis , Biodegradación Ambiental , Isótopos de Carbono/análisis , Carbono
15.
Plant J ; 71(2): 226-38, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22394393

RESUMEN

Plasmodiophora brassicae (clubroot) infection leads to reprogramming of host development resulting in the formation of characteristic galls. In this work we explored the cellular events that underly gall formation in Arabidopsis thaliana with the help of molecular markers of cell division (CYCB1:GUS) and meristematic activity (ANT:GUS). Our results show that gall development involved the amplification of existing meristematic activities within the vascular cambium (VC) and phloem parenchyma (PP) cells in the region of the hypocotyl. Additionally we found that the increase in VC activity and prolonged maintenance of cambial-derived cells in a meristematic state was crucial for gall formation; disruption of the VC activity significantly decreased the gall size. Gall formation also perturbed vascular development with a significant reduction in xylem and increase in PP in infected plants. This situation was reflected in a decrease in transcripts of key factors promoting xylogenesis (VND6, VND7 and MYB46) and an increase in those promoting phloem formation and function (APL, SUC2). Finally we show, using the cell cycle inhibitor ICK1/KRP1 and a cle41 mutant with altered regulation of cambial stem cell maintenance and differentiation, that a decrease in gall formation did not prevent pathogen development. This finding demonstrates that although gall formation is a typical symptom of the disease and influences numbers of spores produced, it is not required for completion of the pathogen life cycle. Together, these results provide an insight into the relationship of the cellular events that accompany Plasmodiophora infection and their role in disease progression.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Tumores de Planta/parasitología , Plasmodiophorida/crecimiento & desarrollo , Animales , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/parasitología , Proteínas de Arabidopsis/metabolismo , Cámbium/citología , Cámbium/genética , Cámbium/crecimiento & desarrollo , Cámbium/parasitología , Diferenciación Celular , División Celular , Regulación de la Expresión Génica de las Plantas/genética , Interacciones Huésped-Patógeno , Hipocótilo/citología , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/parasitología , Estadios del Ciclo de Vida , Meristema/citología , Meristema/genética , Meristema/parasitología , Modelos Biológicos , Mutación , Floema/citología , Floema/genética , Floema/crecimiento & desarrollo , Floema/parasitología , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/parasitología , Plasmodiophorida/patogenicidad , ARN de Planta/genética , Proteínas Recombinantes de Fusión , Virulencia , Xilema/citología , Xilema/genética , Xilema/crecimiento & desarrollo , Xilema/parasitología
16.
Microb Ecol ; 66(1): 84-95, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23640275

RESUMEN

Polluted aquifers contain indigenous microbial communities with the potential for in situ bioremediation. However, the effect of hydrogeochemical gradients on in situ microbial communities (especially at the plume fringe, where natural attenuation is higher) is still not clear. In this study, we used culture-independent techniques to investigate the diversity of in situ planktonic and attached bacterial communities in a phenol-contaminated sandstone aquifer. Within the upper and lower plume fringes, denaturing gradient gel electrophoresis profiles indicated that planktonic community structure was influenced by the steep hydrogeochemical gradient of the plume rather than the spatial location in the aquifer. Under the same hydrogeochemical conditions (in the lower plume fringe, 30 m below ground level), 16S rRNA gene cloning and sequencing showed that planktonic and attached bacterial communities differed markedly and that the attached community was more diverse. The 16S rRNA gene phylogeny also suggested that a phylogenetically diverse bacterial community operated at this depth (30 mbgl), with biodegradation of phenolic compounds by nitrate-reducing Azoarcus and Acidovorax strains potentially being an important process. The presence of acetogenic and sulphate-reducing bacteria only in the planktonic clone library indicates that some natural attenuation processes may occur preferentially in one of the two growth phases (attached or planktonic). Therefore, this study has provided a better understanding of the microbial ecology of this phenol-contaminated aquifer, and it highlights the need for investigating both planktonic and attached microbial communities when assessing the potential for natural attenuation in contaminated aquifers.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodiversidad , Sedimentos Geológicos/microbiología , Agua Subterránea/microbiología , Fenol/metabolismo , Fenoles/análisis , Plancton/metabolismo , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , Ecosistema , Agua Dulce/análisis , Agua Dulce/microbiología , Sedimentos Geológicos/análisis , Agua Subterránea/análisis , Datos de Secuencia Molecular , Fenol/análisis , Fenoles/metabolismo , Filogenia , Plancton/clasificación , Plancton/genética , Plancton/aislamiento & purificación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo
17.
Environ Sci Pollut Res Int ; 29(1): 1223-1238, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34350568

RESUMEN

Microbes in aquifers are present suspended in groundwater or attached to the aquifer sediment. Groundwater is often sampled at gasoline ether oxygenate (GEO)-impacted sites to assess the potential biodegradation of organic constituents. However, the distribution of GEO-degrading microorganisms between the groundwater and aquifer sediment must be understood to interpret this potential. In this study, the distribution of ethyl tert-butyl ether (ETBE)-degrading organisms and ETBE biodegradation potential was investigated in laboratory microcosm studies and mixed groundwater-aquifer sediment samples obtained from pumped monitoring wells at ETBE-impacted sites. ETBE biodegradation potential (as determined by quantification of the ethB gene) was detected predominantly in the attached microbial communities and was below detection limit in the groundwater communities. The copy number of ethB genes varied with borehole purge volume at the field sites. Members of the Comamonadaceae and Gammaproteobacteria families were identified as responders for ETBE biodegradation. However, the detection of the ethB gene is a more appropriate function-based indicator of ETBE biodegradation potential than taxonomic analysis of the microbial community. The study shows that a mixed groundwater-aquifer sediment (slurry) sample collected from monitoring wells after minimal purging can be used to assess the aquifer ETBE biodegradation potential at ETBE-release sites using this function-based concept.


Asunto(s)
Éter , Agua Subterránea , Biodegradación Ambiental , Éteres de Etila , Humanos
18.
Environ Pollut ; 277: 116765, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33647805

RESUMEN

Biodegradation is responsible for most contaminant removal in plumes of organic compounds and is fastest at the plume fringe where microbial cell numbers and activity are highest. As the plume migrates from the source, groundwater containing the contaminants and planktonic microbial community encounters uncontaminated substrata on which an attached community subsequently develops. While attached microbial communities are important for biodegradation, the time needed for their establishment, their relationship with the planktonic community and the processes controlling their development are not well understood. We compare the dynamics of development of attached microbial communities on sterile substrata in the field and laboratory microcosms, sampled simultaneously at intervals over two years. We show that attached microbial cell numbers increased rapidly and stabilised after similar periods of incubation (∼100 days) in both field and microcosm experiments. These timescales were similar even though variation in the contaminant source evident in the field was absent in microcosm studies, implying that this period was an emergent property of the attached microbial community. 16S rRNA gene sequencing showed that attached and planktonic communities differed markedly, with many attached organisms strongly preferring attachment. Successional processes were evident, both in community diversity indices and from community network analysis. Community development was governed by both deterministic and stochastic processes and was related to the predilection of community members for different lifestyles and the geochemical environment.


Asunto(s)
Agua Subterránea , Microbiota , Contaminantes Químicos del Agua , Biodegradación Ambiental , Plancton , ARN Ribosómico 16S/genética , Contaminantes Químicos del Agua/análisis
19.
Pest Manag Sci ; 77(9): 3900-3909, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33729685

RESUMEN

Since the discovery that the plant immune system could be augmented for improved deployment against biotic stressors through the exogenous application of chemicals that lead to induced resistance (IR), many such IR-eliciting agents have been identified. Initially it was hoped that these chemical IR agents would be a benign alternative to traditional chemical biocides. However, owing to low efficacy and/or a realization that their benefits sometimes come at the cost of growth and yield penalties, chemical IR agents fell out of favour and were seldom used as crop protection products. Despite the lack of interest in agricultural use, researchers have continued to explore the efficacy and mechanisms of chemical IR. Moreover, as we move away from the approach of 'zero tolerance' toward plant pests and pathogens toward integrated pest management, chemical IR agents could have a place in the plant protection product list. In this review, we chart the rise and fall of chemical IR agents, and then explore a variety of strategies used to improve their efficacy and remediate their negative adverse effects. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Protección de Cultivos , Control de Plagas , Agricultura , Plantas
20.
Plant J ; 59(2): 329-43, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19302417

RESUMEN

Cells associated with veins of C(3) species often contain significant amounts of chlorophyll, and radiotracer analysis shows that carbon present in the transpiration stream may be used for photosynthesis in these cells. It is not clear whether CO2 is also supplied to these cells close to veins via stomata, nor whether this veinal photosynthesis supplies carbon skeletons to particular metabolic pathways. In addition, it has not been possible to determine whether photosynthesis in cells close to veins of C(3) plants is quantitatively important for growth or fitness. To investigate the role of photosynthesis in cells in and around the veins of C(3) plants, we have trans-activated a hairpin construct to the chlorophyll synthase gene (CS) using an Arabidopsis thaliana enhancer trap line specific to veins. CS is responsible for addition of the phytol chain to the tetrapyrolle head group of chlorophyll, and, as a result of cell-specific trans-activation of the hairpin to CS, chlorophyll accumulation is reduced around veins. We use these plants to show that, under steady-state conditions, the extent to which CO2 is supplied to cells close to veins via stomata is limited. Fixation by minor veins of CO2 supplied to the xylem stream and the amount of specific metabolites associated with carbohydrate metabolism and the shikimate pathway were all reduced. In addition, an abundance of transcripts encoding components of pathways that generate phosphoenolpyruvate were altered. Leaf senescence, growth rate and seed size were all reduced in the lines with lower photosynthetic ability in veins and in cells close to veins.


Asunto(s)
Arabidopsis/fisiología , Clorofila/biosíntesis , Fotosíntesis , Ácido Shikímico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metabolismo de los Hidratos de Carbono , Dióxido de Carbono/metabolismo , Ligasas de Carbono-Oxígeno/genética , Ligasas de Carbono-Oxígeno/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Interferencia de ARN , ARN de Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA