Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361851

RESUMEN

Tandemly arranged and dispersed repetitive DNA sequences are important structural and functional elements that make up a significant portion of vertebrate genomes. Using high throughput, low coverage whole genome sequencing followed by bioinformatics analysis, we have identified seven major tandem repetitive DNAs and two fragments of LTR retrotransposons in the genome of the Nile crocodile (Crocodylus niloticus, 2n = 32). The repeats showed great variability in structure, genomic organization, and chromosomal distribution as revealed by fluorescence in situ hybridization (FISH). We found that centromeric and pericentromeric heterochromatin of C. niloticus is composed of previously described in Crocodylus siamensis CSI-HindIII and CSI-DraI repetitive sequence families, a satellite revealed in Crocodylus porosus, and additionally contains at least three previously unannotated tandem repeats. Both LTR sequences identified here belong to the ERV1 family of endogenous retroviruses. Each pericentromeric region was characterized by a diverse set of repeats, with the exception of chromosome pair 4, in which we found only one type of satellite. Only a few repeats showed non-centromeric signals in addition to their centromeric localization. Mapping of 18S-28S ribosomal RNA genes and telomeric sequences (TTAGGG)n did not demonstrate any co-localization of these sequences with revealed centromeric and pericentromeric heterochromatic blocks.


Asunto(s)
Caimanes y Cocodrilos , Animales , Caimanes y Cocodrilos/genética , Hibridación Fluorescente in Situ , Centrómero/genética , Secuencias Repetitivas de Ácidos Nucleicos , ARN Ribosómico 18S/genética
2.
Cytogenet Genome Res ; 161(1-2): 32-42, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33677437

RESUMEN

Polyploid species represent a challenge for both cytogenetic and genomic studies due to their high chromosome numbers and the morphological similarity between their paralogous chromosomes. This paper describes the use of low-coverage high-throughput sequencing to identify the 14 most abundant tandemly arranged repetitive elements in the paleotetraploid genome of the crucian carp (Carassius carassius, 2n = 100). These repetitive elements were then used for molecular cytogenetic studies of a closely related functionally triploid form of the Prussian carp (Carassius gibelio, 3n = 150 + Bs) and a relatively distant diploid species, the tench (Tinca tinca, 2n = 48). According to their distribution on the chromosomes of the 3 aforementioned species, the repetitive elements here identified can be divided into 5 groups: (1) those specific to a single genomic locus in both Carassius species, despite the recent carp-specific genome duplication; (2) those located in a single genomic locus of T. tinca, but amplified in one or both Carassius species; (3) those massively amplified in the B chromosomes of C. gibelio; (4) those located in a single locus in C. gibelio, but amplified in many blocks in C. carassius; and (5) those located in multiple pericentromeric loci in both Carassius species. Our data indicate that some of the repetitive elements are highly conserved in cyprinoid species and may serve as good cytogenetic and genomic markers for discriminating paralogous chromosomes, while others are evolutionarily recent, and their amplification may be related to the last whole-genome duplication event.


Asunto(s)
Carpas/genética , ADN/genética , Ploidias , Animales , Citogenética , Diploidia , Femenino , Duplicación de Gen , Genoma , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN , Especificidad de la Especie
3.
Cytogenet Genome Res ; 160(3): 134-140, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32092753

RESUMEN

Reptiles show a remarkable diversity of sex determination mechanisms and sex chromosome systems, derived from different autosomal pairs. The origin of the ZW sex chromosomes of Lacerta agilis, a widespread Eurasian lizard species, is a matter of discussion: is it a small macrochromosome from the 11-18 group common to all lacertids, or does this species have a unique ZW pair derived from the large chromosome 5? Using independent molecular cytogenetic methods, we investigated the karyotype of L. agilis exigua from Siberia, Russia, to identify the sex chromosomes. FISH with a flow-sorted chromosome painting probe derived from L. strigata and specific to chromosomes 13, 14, and Z confirmed that the Z chromosome of L. agilis is a small macrochromosome, the same as in L. strigata. FISH with the telomeric probe showed an extensive accumulation of the telomere-like repeat in the W chromosome in agreement with previous studies, excluding the possibility that the lineages of L. agilis studied in different works could have different sex chromosome systems due to a putative intra-species polymorphism. Our results reinforce the idea of the stability of the sex chromosomes and lack of evidence for sex-chromosome turnovers in known species of Lacertidae.


Asunto(s)
Evolución Biológica , Lagartos/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Cromosomas Sexuales/genética , Animales , Hibridación Fluorescente in Situ , Federación de Rusia
4.
Chromosoma ; 127(3): 301-311, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29380046

RESUMEN

Supernumerary chromosomes sporadically arise in many eukaryotic species as a result of genomic rearrangements. If present in a substantial part of species population, those are called B chromosomes, or Bs. This is the case for 70 mammalian species, most of which are rodents. In humans, the most common types of extra chromosomes, sSMCs (small supernumerary marker chromosomes), are diagnosed in approximately 1 of 2000 postnatal cases. Due to low frequency in population, human sSMCs are not considered B chromosomes. Genetic content of both B-chromosomes and sSMCs in most cases remains understudied. Here, we apply microdissection of single chromosomes with subsequent low-pass sequencing on Ion Torrent PGM and Illumina MiSeq to identify unique and repetitive DNA sequences present in a single human sSMC and several B chromosomes in mice Apodemus flavicollis and Apodemus peninsulae. The pipeline for sequencing data analysis was made available in Galaxy interface as an addition to previously published command-line version. Human sSMC was attributed to the proximal part of chromosome 15 long arm, and breakpoints leading to its formation were located into satellite DNA arrays. Genetic content of Apodemus B chromosomes was species-specific, and minor alterations were observed in both species. Common features of Bs in these Apodemus species were satellite DNA and ERV enrichment, as well as the presence of the vaccinia-related kinase gene Vrk1. Understanding of the non-essential genome elements content provides important insights into genome evolution in general.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas Humanos , Cromosomas , Marcadores Genéticos , Murinae/genética , Animales , Genoma , Inestabilidad Genómica , Humanos , Hibridación Fluorescente in Situ , Flujo de Trabajo
5.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31510061

RESUMEN

The involvement of chromosome changes in the initial steps of speciation is controversial. Here we examine diversification trends within the mole voles Ellobius, a group of subterranean rodents. The first description of their chromosome variability was published almost 40 years ago. Studying the G-band structure of chromosomes in numerous individuals revealed subsequent homologous, step-by-step, Robertsonian translocations, which changed diploid numbers from 54 to 30. Here we used a molecular cytogenetic strategy which demonstrates that chromosomal translocations are not always homologous; consequently, karyotypes with the same diploid number can carry different combinations of metacentrics. We further showed that at least three chromosomal forms with 2n = 34 and distinct metacentrics inhabit the Pamir-Alay mountains. Each of these forms independently hybridized with E. tancrei, 2n = 54, forming separate hybrid zones. The chromosomal variations correlate slightly with geographic barriers. Additionally, we confirmed that the emergence of partial or monobrachial homology appeared to be a strong barrier for hybridization in nature, in contradistinction to experiments which we reported earlier. We discuss the possibility of whole arm reciprocal translocations for mole voles. Our findings suggest that chromosomal translocations lead to diversification and speciation.


Asunto(s)
Arvicolinae/genética , Cromosomas de los Mamíferos/genética , Especiación Genética , Variación Genética , Translocación Genética/genética , Animales , Arvicolinae/clasificación , Bandeo Cromosómico , Diploidia , Geografía , Hibridación Genética , Cariotipo , Tayikistán
6.
Cytogenet Genome Res ; 152(2): 65-72, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28719894

RESUMEN

Sokolov's dwarf hamster (Cricetulus sokolovi) is the least studied representative of the striped hamsters (Cricetulus barabensis species group), the taxonomy of which remains controversial. The species was described based on chromosome morphology, but neither the details of the karyotype nor the phylogenetic relationships with other Cricetulus are known. In the present study, the karyotype of C. sokolovi was examined using cross-species chromosome painting. Molecular and cytogenetic data were employed to determine the phylogenetic position of Sokolov's hamster and to analyze the potential pathways of chromosome evolution in Cricetulus. Both the chromosome and molecular data support the species status of Sokolov's hamster. Phylogenetic analysis of the CYTB data placed C. sokolovi as sister to all other striped hamsters (sequence divergence of 8.1%). FISH data revealed that the karyotype of C. sokolovi is highly rearranged, with the most parsimonious scenario of its origin implying at least 4 robertsonian events and a centromere shift. Comparative cytogenetic data on Cricetinae suggest that their evolutionary history includes both periods of chromosomal conservatism and episodes of rapid chromosomal change.


Asunto(s)
Pintura Cromosómica/métodos , Cromosomas de los Mamíferos/genética , Cricetulus/genética , Cariotipo , Filogenia , Animales , Haplotipos/genética
7.
Cytogenet Genome Res ; 152(3): 148-157, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28850953

RESUMEN

Acipenseriformes represent a phylogenetically basal clade of ray-finned fish characterized by unusual genomic traits, including paleopolyploid states of extant genomes with high chromosome numbers and slow rates of molecular evolution. Despite a high interest in this fish group, only a limited number of studies have been accomplished on the isolation and characterization of repetitive DNA, karyotype standardization is not yet complete, and sex chromosomes are still to be identified. Here, we applied next-generation sequencing and cluster analysis to characterize major fractions of sterlet (Acipenser ruthenus) repetitive DNA. Using FISH, we mapped 16 tandemly arranged sequences on sterlet chromosomes and found them to be unevenly distributed in the genome with a tendency to cluster in particular regions. Some of the satellite DNAs might be used as specific markers to identify individual chromosomes and their paralogs, resulting in the unequivocal identification of at least 18 chromosome pairs. Our results provide an insight into the characteristic genomic distribution of the most common sterlet repetitive sequences. Biased accumulation of repetitive DNAs in particular chromosomes makes them especially interesting for further search for cryptic sex chromosomes. Future studies of these sequences in other acipenserid species will provide new perspectives regarding the evolution of repetitive DNA within the genomes of this fish order.


Asunto(s)
ADN Satélite/genética , Peces/genética , Cromosomas Sexuales/genética , Animales , ADN Ribosómico/genética , Evolución Molecular , Marcadores Genéticos , Hibridación Fluorescente in Situ , Cariotipificación , Microdisección , Mapeo Físico de Cromosoma , Análisis de Secuencia de ADN
8.
Chromosome Res ; 24(2): 145-59, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26611440

RESUMEN

The subfamily Arvicolinae consists of a great number of species with highly diversified karyotypes. In spite of the wide use of arvicolines in biological and medicine studies, the data on their karyotype structures are limited. Here, we made a set of painting probes from flow-sorted chromosomes of a male Palearctic collared lemming (Dicrostonyx torquatus, DTO). Together with the sets of painting probes made previously from the field vole (Microtus agrestis, MAG) and golden hamster (Mesocricetus auratus, MAU), we carried out a reciprocal chromosome painting between these three species. The three sets of probes were further hybridized onto the chromosomes of the Eurasian water vole (Arvicola amphibius) and northern red-backed vole (Myodes rutilus). We defined the diploid chromosome number in D. torquatus karyotype as 2n = 45 + Bs and showed that the system of sex chromosomes is X1X2Y1. The probes developed here provide a genomic tool-kit, which will help to investigate the evolutionary biology of the Arvicolinae rodents. Our results show that the syntenic association MAG1/17 is present not only in Arvicolinae but also in some species of Cricetinae; and thus, should not be considered as a cytogenetic signature for Arvicolinae. Although cytogenetic signature markers for the genera have not yet been found, our data provides insight into the likely ancestral karyotype of Arvicolinae. We conclude that the karyotypes of modern voles could have evolved from a common ancestral arvicoline karyotype (AAK) with 2n = 56 mainly by centric fusions and fissions.


Asunto(s)
Arvicolinae/genética , Mapeo Cromosómico/métodos , Pintura Cromosómica/métodos , Mesocricetus/genética , Sintenía/genética , Animales , Evolución Biológica , Línea Celular , Aberraciones Cromosómicas , Bandeo Cromosómico , Cricetinae , Marcadores Genéticos/genética , Cariotipo , Filogenia , Cromosomas Sexuales/genética
9.
PLoS Genet ; 9(4): e1003429, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23593027

RESUMEN

Genome instability plays a key role in multiple biological processes and diseases, including cancer. Genome-wide mapping of DNA double-strand breaks (DSBs) is important for understanding both chromosomal architecture and specific chromosomal regions at DSBs. We developed a method for precise genome-wide mapping of blunt-ended DSBs in human chromosomes, and observed non-random fragmentation and DSB hot spots. These hot spots are scattered along chromosomes and delimit protected 50-250 kb DNA domains. We found that about 30% of the domains (denoted forum domains) possess coordinately expressed genes and that PARP1 and HNRNPA2B1 specifically bind DNA sequences at the forum domain termini. Thus, our data suggest a novel type of gene regulation: a coordinated transcription or silencing of gene clusters delimited by DSB hot spots as well as PARP1 and HNRNPa2B1 binding sites.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas Humanos , Roturas del ADN de Doble Cadena , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Poli(ADP-Ribosa) Polimerasas/genética , Sitios de Unión , Células HEK293 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Estructura Terciaria de Proteína
10.
Genes (Basel) ; 14(2)2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36833416

RESUMEN

Constitutive-heterochromatin placement in the genome affects chromosome structure by occupying centromeric areas and forming large blocks. To investigate the basis for heterochromatin variation in the genome, we chose a group of species with a conserved euchromatin part: the genus Martes [stone marten (M. foina, 2n = 38), sable (M. zibellina, 2n = 38), pine marten (M. martes, 2n = 38), and yellow-throated marten (M. flavigula, 2n = 40)]. We mined the stone marten genome for the most abundant tandem repeats and selected the top 11 macrosatellite repetitive sequences. Fluorescent in situ hybridization revealed distributions of the tandemly repeated sequences (macrosatellites, telomeric repeats, and ribosomal DNA). We next characterized the AT/GC content of constitutive heterochromatin by CDAG (Chromomycin A3-DAPI-after G-banding). The euchromatin conservatism was shown by comparative chromosome painting with stone marten probes in newly built maps of the sable and pine marten. Thus, for the four Martes species, we mapped three different types of tandemly repeated sequences critical for chromosome structure. Most macrosatellites are shared by the four species with individual patterns of amplification. Some macrosatellites are specific to a species, autosomes, or the X chromosome. The variation of core macrosatellites and their prevalence in a genome are responsible for the species-specific variation of the heterochromatic blocks.


Asunto(s)
Carnívoros , Mustelidae , Animales , Mustelidae/genética , Heterocromatina , Hibridación Fluorescente in Situ , Eucromatina , Carnívoros/genética , Estructuras Cromosómicas
11.
Sci Rep ; 13(1): 21055, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030702

RESUMEN

Descriptions of karyotypes of many animal species are currently available. In addition, there has been a significant increase in the number of sequenced genomes and an ever-improving quality of genome assembly. To close the gap between genomic and cytogenetic data we applied fluorescent in situ hybridization (FISH) and Hi-C technology to make the first full chromosome-level genome comparison of the guinea pig (Cavia porcellus), naked mole-rat (Heterocephalus glaber), and human. Comparative chromosome maps obtained by FISH with chromosome-specific probes link genomic scaffolds to individual chromosomes and orient them relative to centromeres and heterochromatic blocks. Hi-C assembly made it possible to close all gaps on the comparative maps and to reveal additional rearrangements that distinguish the karyotypes of the three species. As a result, we integrated the bioinformatic and cytogenetic data and adjusted the previous comparative maps and genome assemblies of the guinea pig, naked mole-rat, and human. Syntenic associations in the two hystricomorphs indicate features of their putative ancestral karyotype. We postulate that the two approaches applied in this study complement one another and provide complete information about the organization of these genomes at the chromosome level.


Asunto(s)
Genoma , Ratas Topo , Humanos , Cobayas , Animales , Sintenía , Hibridación Fluorescente in Situ , Cariotipo , Ratas Topo/genética
12.
Chromosome Res ; 19(4): 549-65, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21559983

RESUMEN

Glires represent a eutherian clade consisting of rodents and lagomorphs (hares, rabbits, and pikas). Chromosome evolution of Glires is known to have variable rates in different groups: from slowly evolving lagomorphs and squirrels to extremely rapidly evolving muroids. Previous interordinal homology maps between slowly evolving Glires were based on comparison with humans. Here, we used sets of chromosome-specific probes from Tamias sibiricus (Sciuridae), Castor fiber (Castoridae) and humans to study karyotypes of six ground squirrels (genera Marmota and Spermophilus) and one tree squirrel (genus Sciurus), mountain hare (genus Lepus), and rabbit (genus Oryctolagus). These data supplemented with GTG banding comparisons allowed us to build comparative chromosome maps. Our data showed the absence of previously found squirrel associations HSA 1/8 and 2/17 in the Eurasian ground squirrels--sousliks and woodchucks, and disruptions of squirrel HSA 10/13 and HSA 8/4/8/12/22 syntenies in the four Spermophilus species studied here. We found that the karyotypes of Sciuridae and Leporidae are highly conserved and close to the Rodentia ancestral karyotype, while Castoridae chromosomes underwent many more changes. We suggest that Lagomorpha and Sciuridae (in contrast to all other rodent families) should be considered as core Glires lineages, characterized by cytogenetically conserved karyotypes which contain chromosomal elements inherent to karyotype of common Glires ancestor. Our data allowed us to further refine the putative ancestral karyotypes of Rodentia. We also describe here the putative ancestral karyotypes of Glires and lagomorphs.


Asunto(s)
Pintura Cromosómica , Evolución Molecular , Genoma/genética , Mamíferos/genética , Homología de Secuencia , Animales , Bandeo Cromosómico , Mapeo Cromosómico , Cromosomas de los Mamíferos/genética , Femenino , Humanos , Cariotipificación , Masculino , Conejos
13.
Chromosome Res ; 18(2): 265-75, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20127166

RESUMEN

Muroid rodents are composed of a wide range of species characterized by extensive karyotypic evolution. Even if this group includes such important laboratory animal models as domestic mouse (Mus musculus), Norway rat (Rattus norvegicus), Chinese hamster (Cricetulus griseus), and golden hamster (Mesocricetus auratus), comparative cytogenetic studies between rodents are difficult due to the characteristic rapid karyotypic evolution. Molecular cytogenetic methods can help resolve problems of comparing muroid chromosomes. Here, we used cross-species comparative multicolour banding with probes obtained from mouse chromosomes 3, 6, 18, and 19 to study the karyotypes of nine muroid species from the three subfamilies Murinae, Cricetinae, and Arvicolinae. Results from multicolour banding with these murine probes (mcb) allowed us to improve the comparative homology maps between these species and to obtain new insights into their karyotypic evolution. We identified evolutionary conserved chromosomal breakpoints and revealed four previously unrecognized homologous segments, four inversions, and 14 evolutionary new centromeres in the nine muroid species studied. We found Mus apomorphic rearrangements, not seen in other muroids, and defined several subfamily specific chromosome breaks, characteristic for Arvicolinae and Cricetinae. We show that mcb libraries are an effective tool both for the cytogenetic characterisation of important laboratory models such as the rat and hamster as well as elucidating the complex phylogenomics relationships of muroids.


Asunto(s)
Cromosomas de los Mamíferos , Roedores/genética , Animales , Evolución Biológica , Centrómero , Cricetinae , Cariotipificación , Ratones , Filogenia , Ratas , Sintenía
14.
Chromosome Res ; 18(4): 459-71, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20379801

RESUMEN

The genus Microtus consists of 65 extant species, making it one of the rodentia genera with the highest number of species. The extreme karyotype diversification in Microtus has made them an ideal species group for comparative cytogenetics and cytotaxonomy. Conventional comparative cytogenetic studies in Microtus have been based mainly on chromosomal banding patterns; the number of Microtus species examined by molecular cytogenetics-cross-species chromosome painting-is limited. In this study, we used whole chromosome painting probes of the field vole Microtus agrestis to detect regions of homology in the karyotypes of eight Microtus species. For almost all investigated species, species-specific associations of conserved chromosomal segments were revealed. Analysis of data obtained here and previously published data allowed us to propose that the ancestral Microtus species had a 2n = 54 karyotype, including two associations of field vole chromosomal segments (MAG 1/17 and 2/8). Further mapping of the chromosome rearrangements onto a molecular phylogenetic tree allows the reconstruction of a karyotype evolution pathway in the Microtus genus.


Asunto(s)
Arvicolinae/genética , Evolución Biológica , Cromosomas , Animales , Pintura Cromosómica , Citogenética , Evolución Molecular , Cariotipificación , Masculino , Filogenia
15.
Mol Cytogenet ; 14(1): 47, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34607577

RESUMEN

BACKGROUND: There are many reports on rearrangements occurring separately in the regions of chromosomes 9p and 15q affected in the case under study. 15q duplication syndrome is caused by the presence of at least one extra maternally derived copy of the Prader-Willi/Angelman critical region. Trisomy 9p is the fourth most frequent chromosome anomaly with a clinically recognizable syndrome often accompanied by intellectual disability. Here we report a new case of a patient with maternally derived unique complex sSMC resulting in partial trisomy of both chromosomes 9 and 15 associated with intellectual disability. CASE PRESENTATION: We characterise a supernumerary derivative chromosome 15: 47,XY,+der(15)t(9;15)(p21.2;q13.2), likely resulting from 3:1 malsegregation during maternal gametogenesis. Chromosomal analysis showed that a phenotypically normal mother is a carrier of balanced translocation t(9;15)(p21.1;q13.2). Her 7-year-old son showed signs of intellectual disability and a number of physical abnormalities including bilateral cryptorchidism and congenital megaureter. The child's magnetic resonance imaging showed changes in brain volume and in structural and functional connectivity revealing phenotypic changes caused by the presence of the extra chromosome material, whereas the mother's brain MRI was normal. Sequence analyses of the microdissected der(15) chromosome detected two breakpoint regions: HSA9:25,928,021-26,157,441 (9p21.2 band) and HSA15:30,552,104-30,765,905 (15q13.2 band). The breakpoint region on chromosome HSA9 is poor in genetic features with several areas of high homology with the breakpoint region on chromosome 15. The breakpoint region on HSA15 is located in the area of a large segmental duplication. CONCLUSIONS: We discuss the case of these phenotypic and brain MRI features in light of reported signatures for 9p partial trisomy and 15 duplication syndromes and analyze how the genomic characteristics of the found breakpoint regions have contributed to the origin of the derivative chromosome. We recommend MRI for all patients with a developmental delay, especially in cases with identified rearrangements, to accumulate more information on brain phenotypes related to chromosomal syndromes.

16.
Life Sci ; 277: 119494, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33862109

RESUMEN

AIMS: The food-born trematode Opisthorchis felineus colonizes bile ducts of the liver of fish-eating mammals including humans. There is growing evidence that this liver fluke is a risk factor for cholangiocarcinoma (CCA). Cancer cell lines are necessary for drug screening and for identifying protein markers of CCA. The aim was to establish a cell line derived from cholangiocarcinoma associated with opisthorchiasis felinea. MAIN METHODS: Allotransplantation, immunohistochemistry, karyotype analysis, cell culture techniques, immunocytochemistry and real-time PCR. KEY FINDINGS: Here we repot the establishment of first CCA cell line, CCA-OF, from a primary tumor of an experimental CCA in Syrian hamsters treated with low doses of dimethyl nitrosamine and associated with O. felineus infection. The cell line was found to be allotransplantable. Expression of epithelial and mesenchymal markers (cytokeratin 7, glycosyltransferase exostosin 1, Ca2+-dependent phospholipid-binding protein annexin A1 and vimentin) was demonstrated by immunostaining of the primary tumors, CCA-OF cells, and allotransplants. CCA-OF cells were found to express presumed CCA biomarkers previously detected in both human and experimental tumors associated with the liver fluke infection. The cells were diploid-like (2n = 42-46) with complex chromosomal rearrangements and have morphological features of epithelial-like cells. The usefulness of the CCA-OF cell model for antitumor activity testing was demonstrated by an analysis of effects of resveratrol treatment. It was shown that resveratrol treatment inhibited the proliferation and the migration ability of CCA-OF cells. SIGNIFICANCE: Thus, the allotransplantable CCA-OF cell line can be used in studies on helminth-associated cholangiocarcinogenesis and for the testing of antitumor drugs.


Asunto(s)
Colangiocarcinoma/metabolismo , Opistorquiasis/metabolismo , Animales , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Carcinogénesis/patología , Línea Celular , Cricetinae/metabolismo , Células Epiteliales/metabolismo , Hígado/metabolismo , Opistorquiasis/complicaciones , Opistorquiasis/patología
17.
Genes (Basel) ; 12(7)2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34202749

RESUMEN

The taxonomy of the genus Calomyscus remains controversial. According to the latest systematics the genus includes eight species with great karyotypic variation. Here, we studied karyotypes of 14 Calomyscus individuals from different regions of Iran and Turkmenistan using a new set of chromosome painting probes from a Calomyscus sp. male (2n = 46, XY; Shahr-e-Kord-Soreshjan-Cheshme Maiak Province). We showed the retention of large syntenic blocks in karyotypes of individuals with identical chromosome numbers. The only rearrangement (fusion 2/21) differentiated Calomyscus elburzensis, Calomyscus mystax mystax, and Calomyscus sp. from Isfahan Province with 2n = 44 from karyotypes of C. bailwardi, Calomyscus sp. from Shahr-e-Kord, Chahar Mahal and Bakhtiari-Aloni, and Khuzestan-Izeh Provinces with 2n = 46. The individuals from Shahdad tunnel, Kerman Province with 2n = 51-52 demonstrated non-centric fissions of chromosomes 4, 5, and 6 of the 46-chromosomal form with the formation of separate small acrocentrics. A heteromorphic pair of chromosomes in a specimen with 2n = 51 resulted from a fusion of two autosomes. C-banding and chromomycin A3-DAPI staining after G-banding showed extensive heterochromatin variation between individuals.


Asunto(s)
Cromosomas de los Mamíferos/genética , Cricetinae/genética , Análisis Citogenético , Evolución Molecular , Animales , Bandeo Cromosómico , Cricetinae/clasificación , Heterocromatina/genética , Hibridación Fluorescente in Situ , Irán , Cariotipo , Ratones/clasificación , Ratones/genética , Filogeografía , Especificidad de la Especie , Sintenía/genética , Turkmenistán
18.
Philos Trans R Soc Lond B Biol Sci ; 376(1833): 20200099, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34304596

RESUMEN

Whole-chromosome fusions play a major role in the karyotypic evolution of reptiles. It has been suggested that certain chromosomes tend to fuse with sex chromosomes more frequently than others. However, the comparative genomic synteny data are too scarce to draw strong conclusions. We obtained and sequenced chromosome-specific DNA pools of Sceloporus malachiticus, an iguanian species which has experienced many chromosome fusions. We found that four of seven lineage-specific fusions involved sex chromosomes, and that certain syntenic blocks which constitute the sex chromosomes, such as the homologues of the Anolis carolinensis chromosomes 11 and 16, are repeatedly involved in sex chromosome formation in different squamate species. To test the hypothesis that the karyotypic shift could be associated with changes in recombination patterns, we performed a synaptonemal complex analysis in this species and in Sceloporus variabilis (2n = 34). It revealed that the sex chromosomes in S. malachiticus had two distal pseudoautosomal regions and a medial differentiated region. We found that multiple fusions little affected the recombination rate in S. malachiticus. Our data confirm more frequent involvement of certain chromosomes in sex chromosome formation, but do not reveal a connection between the gonosome-autosome fusions and the evolution of recombination rate. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.


Asunto(s)
Evolución Biológica , Cariotipo , Lagartos/genética , Cromosomas Sexuales/genética , Animales , Masculino , Complejo Sinaptonémico/genética
19.
Sci Rep ; 11(1): 10557, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006914

RESUMEN

The genus status of Urocricetus was defined recently based on morphological and molecular data. Even though the amount of evidence for a separate phylogenetic position of this genus among Cricetinae continues to increase, there is still no consensus on its relationship to other groups. Here we give the first comprehensive description of the U. kamensis karyotype (2n = 30, NFa = 50) including results of comparative cytogenetic analysis and detailed examination of its phylogenetic position by means of numerous molecular markers. The molecular data strongly indicated that Urocricetus is a distant sister group to Phodopus. Comparative cytogenetic data showed significant reorganization of the U. kamensis karyotype compared to karyotypes of all other hamsters investigated earlier. The totality of findings undoubtedly means that Urocricetus belongs to a separate divergent lineage of Cricetinae.


Asunto(s)
Cricetinae/genética , Cariotipificación , Animales , Bandeo Cromosómico , Cricetinae/clasificación , Femenino , Masculino , Filogenia , Especificidad de la Especie
20.
Sci Rep ; 10(1): 13235, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764633

RESUMEN

Euchromatic segments of the X chromosomes of placental mammals are the most conservative elements of the karyotype, only rarely subjected to either inter- or intrachromosomal rearrangements. Here, using microdissection-derived set of region-specific probes of Terricola savii we detailed the evolutionary rearrangements found in X chromosomes in 20 vole species (Arvicolinae, Rodentia). We show that the evolution of X chromosomes in this taxon was accompanied by multiple para- and pericentric inversions and centromere shifts. The contribution of intrachromosomal rearrangements to the karyotype evolution of Arvicolinae species was approximately equivalent in both the separate autosomal conserved segments and the X chromosomes. Intrachromosmal rearrangements and structural reorganization of the X chromosomes was likely accompanied by an accumulation, distribution, and evolution of repeated sequences.


Asunto(s)
Arvicolinae/genética , Pintura Cromosómica/veterinaria , Cromosoma X/genética , Animales , Inversión Cromosómica , Evolución Molecular , Microdisección , Secuencias Repetitivas de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA