Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Foodborne Pathog Dis ; 19(3): 232-240, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34941425

RESUMEN

Extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli exhibits strong multidrug resistance (MDR) to ampicillin and third-generation cephalosporins. This study examined the occurrence, antimicrobial susceptibility, and molecular genetic features of ESBL-producing E. coli isolates from three commonly consumed minced meat varieties, namely pork, chicken, and beef. In total, 150 samples were collected from 10 local markets in Thailand. ESBL-producing E. coli was identified in 78 samples (52%), and minced chicken meat was most contaminated (79.17%). The isolates exhibited potential susceptibility to amikacin (96.16%) and carbapenems (91-95%). However, ESBL-producing E. coli displayed strong resistance to ampicillin and cefpodoxime (100%) and high MDR to 3-5 antibiotic classes (94.87%). Most presumptive ESBL producers harbored ESBL resistance genes (97.44%), most commonly blaTEM (78.21%). Indeed, our results demonstrated that raw minced meat has a high occurrence of ESBL-producing E. coli harboring ESBL resistance genes, highlighting the importance of implementation of sanitary handling practices to reduce microbial contamination in commercial meat as well as the need for consumer education on safe handling and cooking of meat products.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Ampicilina , Animales , Antibacterianos/farmacología , Bovinos , Pollos , Farmacorresistencia Bacteriana/genética , Carne , Tailandia/epidemiología , beta-Lactamasas/genética
2.
Arch Microbiol ; 204(1): 49, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34935071

RESUMEN

Piper betle leaves have traditionally been used to treat many diseases, including bacterial infections. The present study aimed to investigate the antibacterial, antibiofilm, and anti-adhesion activities of P. betle extract against avian pathogenic Escherichia coli (APEC). The ethanol extract of P. betle leaves demonstrated strong antibacterial activity against clinical isolates of APEC with MIC and MBC values ranging from 0.5 to 1.0 mg/mL as compared with 1% DMSO, a negative control. Disruption and breakdown of the bacterial cells were detected when the cells were challenged with the extract at 2 × MIC. Bacterial cells treated with the extract demonstrated longer cells without a septum, compared to the control. The extract at 1/8, 1/4, and 1/2 × MIC significantly inhibited the formation of the bacterial biofilm of all the tested isolates except the isolate CH10 (P < 0.05) without inhibiting growth. At 1/2 × MIC, 55% of the biofilm inhibition was detected in APEC CH09, a strong biofilm producer. At 32 × MIC, 88% of the inhibition of viable cells embedded in the mature biofilm was detected in APEC CH09. Reduction in the bacterial adhesion to surfaces was shown when APEC were treated with sub-MICs of the extract as observed by SEM. Hydroxychavicol was found to be the major compound presented in the leaf extract as detected by GC-MS analysis. The information suggested potential medicinal benefits of P. betle extract to inhibit the growth, biofilm, and adhesion of avian pathogenic E. coli.


Asunto(s)
Antibacterianos , Biopelículas/efectos de los fármacos , Escherichia coli , Piper betle , Extractos Vegetales , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Piper betle/química , Extractos Vegetales/farmacología , Hojas de la Planta/química
3.
Microbiol Spectr ; 12(7): e0021324, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38809095

RESUMEN

Broad-spectrum ampicillin-resistant and third-generation cephalosporin-resistant Enterobacteriaceae, particularly Escherichia coli and Klebsiella pneumoniae that have pathological features in humans, have become a global concern. This study aimed to investigate the prevalence, antimicrobial susceptibility, and molecular genetic features of extended-spectrum beta-lactamase (ESBL)-producing E. coli and K. pneumoniae isolates in Southern Thailand. Between January and August 2021, samples (n = 199) were collected from a tertiary care hospital in Southern Thailand. ESBL and AmpC-lactamase genes were identified using multiplex polymerase chain reaction (PCR). The genetic relationship between ESBL-producing E. coli and K. pneumoniae was determined using the enterobacterial repetitive intergenic consensus (ERIC) polymerase chain reaction. ESBL-producing E. coli and K. pneumoniae isolates were mostly collected from catheter urine samples of infected female patients. The ESBL production prevalence was highest in the medical wards (n = 75, 37.7%), followed by that in surgical wards (n = 64, 32.2%) and operating rooms (n = 19, 9.5%). Antimicrobial susceptibility analysis revealed that all isolates were resistant to ampicillin, cefotaxime, ceftazidime, ceftriaxone, and cefuroxime; 79.4% were resistant to ciprofloxacin; and 64.3% were resistant to trimethoprim-sulfamethoxazole. In ESBL-producing K. pneumoniae and E. coli, blaTEM (n = 57, 72.2%) and blaCTX-M (n = 61, 50.8%) genes were prominent; however, no blaVEB, blaGES, or blaPER were found in any of these isolates. Furthermore, only ESBL-producing K. pneumoniae had co-harbored blaTEM and blaSHV genes at 11.6%. The ERIC-PCR pattern of multidrug-resistant ESBL-producing strains demonstrated that the isolates were clonally related (95%). Notably, the presence of multidrug-resistant and extremely resistant ESBL producers was 83.4% and 16.6%, respectively. This study highlights the presence of blaTEM, blaCTX-M, and co-harbored genes in ESBL-producing bacterial isolates from hospitalized patients, which are associated with considerable resistance to beta-lactamase and third-generation cephalosporins. IMPORTANCE: We advocate for evidence-based guidelines and antimicrobial stewardship programs to encourage rational and appropriate antibiotic use, ultimately reducing the selection pressure for drug-resistant bacteria and lowering the likelihood of ESBL-producing bacterial infections.


Asunto(s)
Antibacterianos , Infecciones por Escherichia coli , Escherichia coli , Infecciones por Klebsiella , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Centros de Atención Terciaria , beta-Lactamasas , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/aislamiento & purificación , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Humanos , Centros de Atención Terciaria/estadística & datos numéricos , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Escherichia coli/enzimología , Tailandia/epidemiología , Femenino , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/epidemiología , Antibacterianos/farmacología , Masculino , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/epidemiología , Persona de Mediana Edad , Adulto , Farmacorresistencia Bacteriana Múltiple/genética , Anciano , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Adulto Joven , Anciano de 80 o más Años
4.
Foods ; 13(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38891001

RESUMEN

This study focused on L. paracasei strains isolated from fermented palm sap in southern Thailand that exhibit potential probiotic characteristics, including antibiotic susceptibility, resistance to gastrointestinal stresses, and antimicrobial activity against various pathogens. However, a thorough investigation of the whole genome sequences of L. paracasei isolates is required to ensure their safety and probiotic properties for human applications. This study aimed to sequence the genome of L. paracasei isolated from fermented palm sap, to assess its safety profile, and to conduct a comprehensive comparative genomic analysis with other Lacticaseibacillus species. The genome sizes of the seven L. paracasei strains ranged from 3,070,747 bp to 3,131,129 bp, with a GC content between 46.11% and 46.17% supporting their classification as nomadic lactobacilli. In addition, the minimal presence of cloud genes and a significant number of core genes suggest a high degree of relatedness among the strains. Meanwhile, phylogenetic analysis of core genes revealed that the strains possessed distinct genes and were grouped into two distinct clades. Genomic analysis revealed key genes associated with probiotic functions, such as those involved in gastrointestinal, oxidative stress resistance, vitamin synthesis, and biofilm disruption. This study is consistent with previous studies that used whole-genome sequencing and bioinformatics to assess the safety and potential benefits of probiotics in various food fermentation processes. Our findings provide valuable insights into the potential use of seven L. paracasei strains isolated from fermented palm sap as probiotic and postbiotic candidates in functional foods and pharmaceuticals.

5.
Microorganisms ; 12(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065167

RESUMEN

Vancomycin-resistant Enterococcus faecium (VREF) causes nosocomial infections with high mortality and morbidity rates. This study aimed to evaluate the antibacterial and antibiofilm activities of aqueous crude Gymnema inodorum leaf extract (GIE) against the VREF ATCC 700221 strain. The antimicrobial activity of GIE against VREF was performed using disk diffusion and broth microdilution. The antibiofilm activities were evaluated using the crystal violet staining assay. The antioxidant potential was evaluated. Preliminary screening of the antimicrobial activity of 50 and 100 µg/disk of GIE against VREF revealed inhibition zones of 8.33 ± 0.58 mm and 8.67 ± 0.29 mm, respectively. Additionally, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against VREF were 125 and ≥ 250 mg/mL, respectively. SEM analysis showed that treatment with GIE caused morphological changes, including incomplete cell division, damaged cell walls, and cell content leakage, suggesting a disruption of bacterial cells. GIE also inhibited and eradicated biofilms formed by VREF. The extract exhibited antioxidant activities in the DPPH and ABTS assays. While GIE shows potential as an antibacterial and antibiofilm agent, further studies are necessary to fully understand the underlying mechanisms and optimize its use for therapeutic applications.

6.
Adv Pharmacol Pharm Sci ; 2024: 5959077, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296309

RESUMEN

The medicinal value of Centella asiatica leaf extract was evaluated as an alternative treatment. The chemical composition of the leaf extract was analyzed, and the biological activities were determined. High-performance liquid chromatography coupled with a photodiode array detector (HPLC-PDA) was used to identify the asiatic acid, madasiatic acid, and madecassic acid/Brahmic acid isolated from the ethanolic extract. The plant extract at 25 mg/disk was found to inhibit both Gram-positive and Gram-negative pathogenic bacteria by the agar disk diffusion test. The MIC and MBC of the ethanolic extracts were better than those of the aqueous extracts. The ethanolic extracts showed antibacterial activity against Gram-positive bacteria with MICs and MBCs ranging from 1.024 to 2.048 mg/mL and 2.048 to 4.096 mg/mL, respectively. The remarkable antibacterial activities were observed against S. mutans. The ethanolic extract at a concentration of 1/2 × MIC exhibited the inhibition effect on S. mutans biofilm formation like the activity of 0.2% chlorhexidine and significantly modified hydrophobicity of the bacterial cell surface. The effects were confirmed via molecular docking analysis. The binding affinities of asiatic acid, madecassic acid, and madasiatic acid with glucosyltransferase C (GtfC) of S. mutans exhibited superior strength in comparison with alpha-acarbose and chlorhexidine. Moreover, the nitric oxide (NO) secretion of RAW247.6 cells was determined after treating the cells with concentrations of the extract. The C. asiatica ethanolic extract can inhibit the secretion of NO, which can inhibit the inflammatory process. The findings indicate the applications of the C. asiatica ethanolic extract as the alternative anti-S. mutans agent and could be used for further formulation for the treatment and prevention of dental diseases and inflammatory injury in the oral cavity.

7.
Sci Rep ; 14(1): 13632, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871850

RESUMEN

Helicobacter pylori is a prominent gastrointestinal pathogen associated with various gastrointestinal illnesses. It presents substantial health risks due to its antibiotic resistance. Therefore, it is crucial to identify alternative treatments for H. pylori infections. Limosilactobacillus spp exhibit probiotic properties with beneficial effects in humans; however, the mechanisms by which it counteracts H. pylori infection are unknown. This study aimed to evaluate the potential of Limosilactobacillus fermentum T0701 lyophilized cell-free supernatants (LCFS) against H. pylori. The LCFS has varying antimicrobial activities, with inhibition zones of up to 10.67 mm. The minimum inhibitory concentration and minimum bacterial concentration of LCFS are 6.25-25.00 mg/mL and 6.25 mg/mL to > 50.00 mg/mL, respectively, indicating its capability to inhibit H. pylori. There is morphological damage observed in H. pylori treated with LCFS. Additionally, H. pylori adhesion to AGS cells (human gastric adenocarcinoma epithelial cells) reduces by 74.23%, highlighting the LCFS role in preventing bacterial colonization. Moreover, LCFS exhibits no cytotoxicity or morphological changes in AGS cells, and with no detected virulence or antimicrobial resistance genes, further supporting its safety profile. L. fermentum T0701 LCFS shows promise as a safe and effective non-toxic agent against H. pylori, with the potential to prevent gastric colonization.


Asunto(s)
Antibacterianos , Helicobacter pylori , Limosilactobacillus fermentum , Pruebas de Sensibilidad Microbiana , Helicobacter pylori/efectos de los fármacos , Limosilactobacillus fermentum/fisiología , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Liofilización , Probióticos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/tratamiento farmacológico , Línea Celular Tumoral
8.
Antibiotics (Basel) ; 13(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39061286

RESUMEN

Growing interest in probiotics has spurred research into their health benefits for hosts. This study aimed to evaluate the probiotic properties, especially antibacterial activities and the safety of two Weissella confusa strains, W1 and W2, isolated from Khao-Mahk by describing their phenotypes and genotypes through phenotypic assays and whole genome sequencing. In vitro experiments demonstrated that both strains exhibited robust survival under gastric and intestinal conditions, such as in the presence of low pH, bile salt, pepsin, and pancreatin, indicating their favorable gut colonization traits. Additionally, both strains showed auto-aggregation and strong adherence to Caco2 cells, with adhesion rates of 86.86 ± 1.94% for W1 and 94.74 ± 2.29% for W2. These high adherence rates may be attributed to the significant exopolysaccharide (EPS) production observed in both strains. Moreover, they exerted remarkable antimicrobial activities against Stenotrophomonas maltophilia, Salmonella enterica serotype Typhi, Vibrio cholerae, and Acinetobacter baumannii, along with an absence of hemolytic activities and antibiotic resistance, underscoring their safety for probiotic application. Genomic analysis corroborated these findings, revealing genes related to probiotic traits, including EPS clusters, stress responses, adaptive immunity, and antimicrobial activity. Importantly, no transferable antibiotic-resistance genes or virulence genes were detected. This comprehensive characterization supports the candidacy of W1 and W2 as probiotics, offering substantial potential for promoting health and combating bacterial infections.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37713167

RESUMEN

Kratom (Mitragyna speciosa) leaves are commonly used to enhance endurance and treat various diseases. This study evaluated the effect of kratom leaf fermentation with Lactobacillus rhamnosus. Antibacterial activity was investigated against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Escherichia coli, and E. coli O157:H7. Biofilm inhibition and eradication assays were also performed. Antioxidant properties were determined by measuring the total phenolic and flavonoid content and DPPH and ABTS scavenging activities. Nitric oxide and TNF-α, IL-1ß, and IL-6 expressions in LPS-stimulated RAW 264.7 macrophage cells were also measured. Aqueous kratom extract exhibited promising effects against free radicals and pro-inflammatory cytokines. Notably, all fermented kratoms showed significant antibacterial activity against the tested pathogens and antibiofilm formation by S. aureus and MRSA. Furthermore, the eradication of established biofilms of fermented kratoms was observed in S. aureus (day 2, 50 mg/mL) and E. coli (day 2, 100 mg/mL and day 4, 50 mg/mL). To the best of our knowledge, this study is the first to report that fermented and non-fermented kratoms could be nutraceutical sources of antibacterial, antibiofilm, antioxidant, and anti-inflammatory substances against related diseases and can be applied further in dietary or cosmetic products with health-promoting effects.

10.
Microbiol Resour Announc ; 12(7): e0045523, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37318327

RESUMEN

Clostridioides difficile is a Gram-positive, obligate anaerobic, toxin-producing bacillus that is linked to antibiotic-associated diarrhea. Here, we report the whole-genome sequence of a C. difficile strain isolated from stool from a patient, using next-generation sequencing (MGISEG-2000). De novo assembly revealed a genome length of 4,208,266 bp. Multilocus sequence typing (MLST) results showed that the isolate belonged to sequence type 23 (ST23).

11.
Trop Med Infect Dis ; 8(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36668942

RESUMEN

The roles of anti-inflammatory cytokines in the pathogenesis of severe malaria have been widely studied, and the role of IL-10 in the pathogenesis of severe malaria remains unclear. Therefore, we performed a systematic review and meta-analysis to determine the difference in IL-10 levels between patients with severe malaria and those with non-severe malaria. The search for relevant studies was performed using PubMed, Scopus, and Embase from 1 February 2022 to 12 February 2022. The quality of the included studies was assessed according to the guidelines of the Strengthening the Reporting of Observational Studies in Epidemiology. The random-effects model was used to estimate the pooled effect. In all, 1215 studies were identified, and 19 were included in the quantitative syntheses. The results showed that patients with severe malaria had a higher IL-10 level than those with non-severe malaria (p = 0.03, pooled standardized mean difference: 0.74, 95% CI: 0.08-1.40, I2: 97.22%, 19 studies/21 sub studies). The meta-analysis results demonstrated increased IL-10 levels in patients with severe malaria compared with those with non-severe malaria. However, with the heterogeneity of the meta-analysis results, further studies are required to confirm the changes in the IL-10 levels according to the severity of malaria and to investigate whether a combination of other severity parameters with IL-10 levels could be an alternative marker for severe malaria.

12.
Comp Immunol Microbiol Infect Dis ; 103: 102093, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37976973

RESUMEN

Extended-spectrum beta-lactamase (ESBL) production and biofilm formation are mechanisms employed by Escherichia coli to resist beta-lactam antibiotics. Thus, we aimed to examine antibiotic resistance associated with ESBL production and biofilm formation in E. coli isolates from swine farms in Southern Thailand. In total, 159 E. coli isolates were obtained, with 44 isolates identified as ESBL producers, originating from feces (18.87 %) and wastewater (8.80 %) samples. All ESBL-producing strains exhibited resistance to ampicillin (100 %), followed by the cephalosporin group (97.73 %) and tetracycline (84.09 %). Multidrug resistance was observed in 17 isolates (38.63 %). Among the isolates from feces samples, the blaGES gene was the most prevalent, detected in 90 % of the samples, followed by blaCTX-M9 (86.67 %) and blaCTX-M1 (66.67 %), respectively. In the bacteria isolated from wastewater, both blaGES and blaCTX-M9 genes were the predominant resistance genes, detected in 100 % of the isolates, followed by blaCTX-M1 (64.29 %) and blaTEM (50 %), respectively. Strong biofilm formation was observed in 11 isolates (36.67 %) from feces and 4 isolates (25.57 %) from wastewater samples. Notably, nearly 100 % of ESBL-producing strains isolated from feces tested positive for both pgaA and pgaC genes, which play a role in intracellular adhesion and biofilm production. These findings contribute to the understanding and potential control of ESBL-producing E. coli, and the dissemination of antibiotic resistance and biofilm-related genes in swine farms.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Enfermedades de los Porcinos , Animales , Porcinos , Escherichia coli , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/veterinaria , Aguas Residuales , beta-Lactamasas/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Biopelículas , Proteínas de la Membrana Bacteriana Externa
13.
Vet World ; 15(2): 299-308, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35400968

RESUMEN

Background and Aim: Probiotics are beneficial microorganisms that play important roles by adhering to the gut and producing antimicrobial substances to inhibit pathogens. The objective of this study was to isolate and characterize the probiotic lactic acid bacteria (LAB) from Palmyra palm sugar, which can produce antimicrobial compounds against methicillin-resistant Staphylococcus aureus (MRSA), a new zoonotic and food-borne pathogens. Materials and Methods: Twenty-six LAB isolates were isolated from 30 Palmyra palm sugar samples. Three selected LAB were further characterized as probiotics. In addition, the antibacterial and anti-biofilm-forming activities of the probiotics' culture supernatants against MRSA and food-borne pathogens were investigated. Finally, the selected probiotics were identified by aligning 16S rRNA sequences. Results: The three confirmed probiotics, WU 0904, WU 2302, and WU 2503, showed strong antibacterial activities against S. aureus, MRSA, Escherichia coli O157:H7, and Listeria monocytogenes, as measured by a broth microdilution assay. Among the LAB isolates, 82.22-86.58%, 91.83-96.06%, and 64.35-74.93% exhibited resistance to low pH, pancreatin treatment, and bile salts, respectively. It was found that 59.46% and 83.33% auto-aggregation was observed in 2 and 24 h, respectively. Moreover, 50.25-57.24% adhesion was detected after the incubation of the bacterial cells to Caco-2 cells.. Biofilm inhibition (82.81-87.24%) was detected after the treatment of MRSA with the culture supernatants, when compared with that to the control. By the alignment of 16S rRNA sequences, the isolate WU 2302 was identified as Lacticaseibacillus spp. with 98.82% homology when compared to the GenBank database. Conclusion: This study indicates that isolated probiotics can produce antimicrobial compounds against MRSA and food-borne pathogens. The obtained results strongly suggest that these probiotics are promising candidates for pharmaceutical products.

14.
Heliyon ; 8(10): e11063, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36276732

RESUMEN

Lacticaseibacillus paracasei is one of the probiotic bacteria widely identified from fermented foods. The application of L. paracasei is commonly used in dairy and non-dairy products. To investigate the probiotic properties of L. paracasei cells including their acid, pepsin, pancreatin, and bile salt tolerances; adhesion ability; antipathogen activity; and antibiotic susceptibility, L. paracasei cells were incorporated into skim milk and lyophilized by freeze drying. Freeze-dried probiotic cells were add to green banana powder and low moisture additive food matrices and a storage analysis of the product was performed. The result showed that L. paracasei cells possessed potentially beneficial probiotic properties to survive stress in the gastrointestinal tract (GIT) and functional abilities as an anti-enteropathogenic agent; they were also safe to use and displayed antibiotic properties. Furthermore, the probiotic freeze-drying technique preserved high probiotic cell survivability (1011 CFU/g). In term of prolonged storage (60 days), the powder product was stable and maintained probiotic survival (107 CFU/g) while excluding non-probiotic growth. In conclusion, L. paracasei displayed probiotic properties in the GIT and was judged to be a highly acceptable product as a probiotics-banana rehydrated beverage.

15.
Saudi Med J ; 43(9): 991-999, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36104060

RESUMEN

OBJECTIVES: To assess the prevalence of carbapenemase genes among multidrug-resistant Pseudomonas aeruginosa (P. aeruginosa) isolates from tertiary care centers in Southern Thailand. METHODS: The prevalence of carbapenemase genes in P. aeruginosa isolates collected from patients hospitalized between 2015-2017 in 2 tertiary care hospitals in Songkhla Province, Southern Thailand, was investigated. Standard laboratory procedures were followed and disk diffusion test was used for bacterial identification and susceptibility evaluations. Carbapenemase genes were detected using multiplex polymerase chain reaction (PCR) and genotyping by pulsed field gel electrophoresis. RESULTS: Among the 289 P. aeruginosa isolates, 55% was from sputum, 19.4% was from urine, and 8% was from secretions. The prevalence was 55.7% in carbapenem-resistant multidrug-resistant P. aeruginosa (CR-MDR-PA) and 39.4% in multidrug-resistant P. aeruginosa (MDR-PA). Resistance to imipenem, meropenem, gentamicin, and ceftazidime ranged from 50-60%, and amikacin was the most effective antibiotic (38.4%). The carbapenemase genes bla VIM (27.7%), bla IMP (23.9%), and bla OXA48 (4.8%) were detected; however, bla SPM and bla BIC were not detected in any of the isolates. Pulsed field gel electrophoresis analysis revealed clonal diversity among 17 CR-MDR-PA strains. CONCLUSION: A high percentage of CR-MDR-PA carries carbapenemase genes in our area; therefore, more emphasis on and application of molecular techniques for infection prevention and control may provide useful insights on disease epidemiology.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Proteínas Bacterianas , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Humanos , Pruebas de Sensibilidad Microbiana , Prevalencia , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/epidemiología , Infecciones por Pseudomonas/microbiología , Centros de Atención Terciaria , Tailandia/epidemiología , beta-Lactamasas
16.
Vet World ; 15(10): 2466-2474, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36425140

RESUMEN

Background and Aim: Prebiotics are a group of nutrients or compounds that are degraded by the gut microbiota, including Lacticaseibacillus paracasei. The probiotic plays an important role in adhesion to the gut and is able to produce antimicrobial substances to inhibit pathogens. This study aimed to investigate the effects of Sangyod rice bran extract on the growth promotion of L. paracasei. Furthermore, antibacterial activity of the extract and L. paracasei supernatants cultured in De Man, Rogosa and Sharpe (MRS) medium plus the extract against zoonotic and foodborne pathogens was investigated. Materials and Methods: Antibacterial activity of the crude extract and the oil from Sangyod rice bran against the pathogens, including Bacillus cereus, Staphylococcus aureus, Escherichia coli, Avian pathogenic E. coli, and Pseudomonas aeruginosa was investigated using broth microdilution assay. The effects of the crude extract and the oil on the growth and adhesion of L. paracasei were further determined. The antibacterial activity of L. paracasei supernatant cultured in the medium supplemented with the extract and the oil against the pathogens was determined by agar well diffusion assay, followed by the broth microdilution assay. Finally, the chemical constituents and antioxidant activity of the crude extract and the oil from Sangyod rice bran were investigated. Results: The crude extract and the oil from Sangyod rice bran enhanced L. paracasei growth during the exponential phase. Furthermore, the crude extract at 0.25 mg/mL significantly enhanced the adhesion of L. paracasei to the surface compared with the control. Both minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of the crude extract against B. cereus and S. aureus were 0.5 and 1.0 mg/mL, respectively. All pathogens were sensitive to the supernatant of L. paracasei with similar MIC and MBC ranging from 12.5% v/v to 50% v/v. However, the MIC and MBC values of L. paracasei supernatant grown in MRS medium plus the crude extract and oil were not significantly different compared to the supernatant obtained from MRS alone. The crude extract had free radical scavenging activities with IC50 values at 0.61 mg/mL. Conclusion: The results suggested the potential benefits of the crude extract from Sangyod rice bran for inducing the growth and the adhesion of L. paracasei and inhibiting zoonotic and foodborne pathogens.

17.
Risk Manag Healthc Policy ; 14: 3807-3816, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34548829

RESUMEN

INTRODUCTION: Hypertension (HT) has a significant impact on health care worldwide. Therapeutic inertia (TI) is defined as the failure to intensify therapy in the absence of an optimal goal and is widely used as a quality of care parameter. The coronavirus disease 2019 (COVID-19) pandemic has affected many health-care systems, including HT care. Therefore, the present study assessed the impact of the COVID-19 pandemic on TI and its predictors in patients with HT. METHODS: The electronic medical records of patients with HT who attended a primary care clinic at a tertiary hospital during pre-COVID-19 (February 2019 to February 2020) and COVID-19 (March to August 2020) periods were reviewed. RESULTS: Our study included 6089 visits during the 12-month pre-COVID-19 period and 2852 visits during the 6-month COVID-19 period. Most of the baseline characteristics of the HT patients were not significantly different between the two time periods. During the COVID-19 period, the percentage of uncontrolled HT visits decreased from 43% to 31%. Similarly, the prevalence of TI decreased from 81% to 77%. False TI was predominantly due to physicians' concerns regarding the in-clinic blood pressure measurement being inaccurate during both the periods. CONCLUSION: After readjustment for the physicians 'reasons, the true TI was 64% and 60% in the pre-COVID-19 and COVID-19 period. For adjusted physician and patient-related factors, multilevel modeling was used. Senior medical staff visits, elderly patients, prior diabetes mellitus diagnosis, patients who used more than one type of anti-HT medication, and patients with systolic blood pressure >150 mmHg were all predictors of TI. The COVID-19 period, on the other hand had no effect on TI with an adjusted odds ratio of 0.82 (95% confidence interval, 0.67-1.01).

18.
Artículo en Inglés | MEDLINE | ID: mdl-33995550

RESUMEN

Malaria is still a serious cause of mortality and morbidity. Moreover, the emergence of malaria parasite resistance to antimalarial drugs has prompted the search for new, effective, and safe antimalarial agents. For this reason, the study of medicinal plants in discovering new antimalarial drugs is important and remains a crucial step in the fight against malaria. Hence, this study is aimed at investigating the antimalarial activity of Gymnema inodorum leaf extract (GIE) in Plasmodium berghei infected mice. Aqueous crude extract of G. inodorum leaves was prepared in distilled water (DW) and acute toxicity in mice was carried out. The antimalarial activity was assessed in the five groups of ICR mice employing the 4-day suppressive and curative tests. Untreated and positive controls were given DW along with 10 mg/kg of chloroquine, respectively. Any signs of toxicity, behavioral changes, and mortality were not observed in mice given GIE up to 5,000 mg/kg. GIE significantly (P < 0.05) suppressed parasitemia by 25.65%, 38.12%, and 58.28% at 10, 50, and 100 mg/kg, respectively, in the 4-day suppressive test. In the curative test, the highest parasitemia inhibition of 66.78% was observed at 100 mg/kg of GIE. Moreover, GIE prevented packed cell volume reduction and body weight loss compared to the untreated control. Additionally, GIE was able to prolong the mean survival time of infected mice significantly. The results obtained in this study confirmed the safety and promise of G. inodorum as an important source of new antimalarial agents and justify its folkloric use for malaria treatment.

19.
PeerJ ; 9: e11478, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055492

RESUMEN

OBJECTIVE: Vancomycin-resistant enterococci are nosocomial pathogens that are responsible for commonly causing healthcare-associated infections, and they exhibit increased resistance to many antimicrobials, particularly to vancomycin. The epidemiological data available on vancomycin-resistant enterococci (VRE) in Thailand are inadequate. METHODS: Using enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR), this study investigated genes that encode antimicrobial resistance and genetic relatedness to further understand VRE prevalence. Ninety VRE isolates were collected between 2011 and 2019 from a tertiary care hospital in southern Thailand. Antimicrobial susceptibility was determined using the disk diffusion method and E-test methods. Multiplex PCR was performed to detect the van gene and virulence genes. RESULTS: The study showed a high prevalence of diverse multidrug-resistant VRE strains. The prevalence of VRE infection was the highest in 2014 (28 isolates, 39.4%). VRE were mostly found in the urogenital tract (26 isolates, 28.9%), followed by the digestive tract (20%), body fluid, i.e., pancreatic cyst fluid, peritoneal dialysis fluid, Jackson-Pratt (JP) drain (20%), and blood specimens (10%). Patients in medical and surgical wards had 71.1% multi-drug-resistant and 28.9% extensively drug-resistant (XDR) VRE strains, respectively. The most prevalent antibiotic resistance was to ampicillin (74.4%). Susceptibility to gentamicin and meropenem were similar (7% and 10%, respectively). Four isolates (4.4%) were resistant to colistin. Only vanA was detected among the strains. The virulence gene test showed that the detection rates of enterococcal surface protein (esp) and hyaluronidase (hyl) genes were 91.1% and 5.6%, respectively. According to ERIC-PCR analysis, 51 of 90 strains had clonality, with a similarity rate of 95%. CONCLUSIONS: We conclude that there is a need to implement infection control practices and active surveillance. Molecular techniques can effectively detect antibiotic-resistant genes, which would allow monitoring to control VRE infection in hospitals.

20.
Probiotics Antimicrob Proteins ; 13(4): 957-969, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33595830

RESUMEN

Lactic acid bacteria (LAB), which are the most frequently used probiotics in foods, confer health benefits such as antimicrobial activity, immune stimulation, and anticancer activity. Fermented palm sap is a potential source of LAB. This study aimed to evaluate in vitro antimicrobial and probiotic properties of LAB isolated from traditional fermented palm sap in Thailand. Among 40 isolated LAB species, 10 were preliminarily selected for their antimicrobial activity. These 10 isolates were identified and confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and 16S rRNA sequencing as Lactobacillus paracasei (8/10), Lactobacillus fermentum (1/10), and Lactobacillus brevis (1/10). They were evaluated for probiotic characteristics and antimicrobial activities against pathogens. These isolates were tolerant toward simulated gastrointestinal tract conditions, including low pH, pepsin, pancreatin, and bile salts. The 10 isolates retained strong auto-aggregation and cell surface hydrophobicity, and they adhered tightly to human intestinal epithelial cells. The isolates were susceptible to ampicillin, erythromycin, clindamycin, tetracycline, and chloramphenicol but resistant to vancomycin, kanamycin, and streptomycin. Moreover, all isolates exhibited no hemolytic activity. All isolates exhibited good antibacterial activity against nine pathogenic bacteria. Thus, these 10 Lactobacillus isolates from fermented palm sap are promising potential candidates for use as probiotics in functional fermented foods and pharmaceutical products.


Asunto(s)
Antiinfecciosos , Bebidas Fermentadas/microbiología , Lactobacillus , Probióticos , ARN Ribosómico 16S/genética , Tailandia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA