Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Molecules ; 27(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36014339

RESUMEN

Age-related macular degeneration (AMD) was described for the first time in the 1840s and is currently the leading cause of blindness for patients over 65 years in Western Countries. This disease impacts the eye's posterior segment and damages the macula, a retina section with high levels of photoreceptor cells and responsible for the central vision. Advanced AMD stages are divided into the atrophic (dry) form and the exudative (wet) form. Atrophic AMD consists in the progressive atrophy of the retinal pigment epithelium (RPE) and the outer retinal layers, while the exudative form results in the anarchic invasion by choroidal neo-vessels of RPE and the retina. This invasion is responsible for fluid accumulation in the intra/sub-retinal spaces and for a progressive dysfunction of the photoreceptor cells. To date, the few existing anti-AMD therapies may only delay or suspend its progression, without providing cure to patients. However, in the last decade, an outstanding number of research programs targeting its different aspects have been initiated by academics and industrials. This review aims to bring together the most recent advances and insights into the mechanisms underlying AMD pathogenicity and disease evolution, and to highlight the current hypotheses towards the development of new treatments, i.e., symptomatic vs. curative. The therapeutic options and drugs proposed to tackle these mechanisms are analyzed and critically compared. A particular emphasis has been given to the therapeutic agents currently tested in clinical trials, whose results have been carefully collected and discussed whenever possible.


Asunto(s)
Envejecimiento , Degeneración Macular , Anciano , Humanos , Degeneración Macular/tratamiento farmacológico , Células Fotorreceptoras , Retina , Epitelio Pigmentado de la Retina
2.
Beilstein J Org Chem ; 17: 1001-1040, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025808

RESUMEN

Biguanide is a unique chemical function, which has attracted much attention a century ago and is showing resurgent interest in recent years after a long period of dormancy. This class of compounds has found broad applications such as reaction catalysts, organic strong bases, ligands for metal complexation, or versatile starting materials in organic synthesis for the preparation of nitrogen-containing heterocycles. Moreover, biguanides demonstrate a wide range of biological activities and some representatives are worldwide known such as metformin, the first-line treatment against type II diabetes, or chlorhexidine, the gold standard disinfectant and antiseptic. Although scarcely represented, the number of "success stories" with biguanide-containing compounds highlights their value and their unexploited potential as future drugs in various therapeutic fields or as efficient metal ligands. This review provides an extensive and critical overview of the synthetic accesses to biguanide compounds, as well as their comparative advantages and limitations. It also underlines the need of developing new synthetic methodologies to reach a wider variety of biguanides and to overcome the underrepresentation of these compounds.

3.
Bioorg Chem ; 104: 104271, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32992279

RESUMEN

Two series of compounds carrying 3-amino-1,2,4-triazole scaffold were synthesized and evaluated for their anticancer activity against a panel of cancer cell lines using XTT assay. The 1,2,4-triazole synthesis was revisited for the first series of pyridyl derivatives. The biological results revealed the efficiency of the 3-amino-1,2,4-triazole core that could not be replaced and a clear beneficial effect of a 3-bromophenylamino moiety in position 3 of the triazole for both series (compounds 2.6 and 4.6) on several cell lines tested. Moreover, our results point out an antiangiogenic activity of these compounds. Overall, the 5-aryl-3-phenylamino-1,2,4-triazole structure has promising dual anticancer activity.


Asunto(s)
Antineoplásicos/farmacología , Triazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química , Células Tumorales Cultivadas
4.
Bioorg Med Chem Lett ; 29(24): 126710, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31699610

RESUMEN

We report herein the synthesis of a newly described anti-cancer agent, NRPa-308. This compound antagonizes Neuropilin-1, a multi-partners transmembrane receptor overexpressed in numerous tumors, and thereby validated as promising target in oncology. The preparation of NRPa-308 proved challenging because of the orthogonality of the amide and sulphonamide bonds formation. Nevertheless, we succeeded a gram scale synthesis, according to an expeditious three steps route, without intermediate purification. This latter point is of utmost interest in reducing the ecologic impact and production costs in the perspective of further scale-up processes. The purity of NRPa-308 has been attested by means of conventional structural analyses and its crystallisation allowed a structural assessment by X-Ray diffraction. We also reported the remarkable chemical stability of this molecule in acidic, neutral and basic aqueous media. Eventually, we observed for the first time the accumulation of NRPa-308 in two types of human breast cancer cells MDA-MB231 and BT549.


Asunto(s)
Antineoplásicos/uso terapéutico , Neuropilina-1/uso terapéutico , Antineoplásicos/farmacología , Humanos , Estructura Molecular
5.
Med Res Rev ; 37(1): 98-148, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27569556

RESUMEN

Melanoma is the deadliest form of skin cancer. While associated survival prognosis is good when diagnosed early, it dramatically drops when melanoma progresses into its metastatic form. Prior to 2011, the favored therapies include interleukin-2 and chemotherapies, regardless of their low efficiency and their toxicity. Following key biological findings, two new types of therapy have been approved. First, there are the targeted therapies, which rely on small molecule B-Raf and MEK inhibitors and allow the treatment of patients with B-Raf mutated melanoma. Second, there are the immunotherapies, with anti-CTLA-4 and anti-PD-1 antibodies that are used for patients harboring a B-Raf wild-type status. Both approaches have significantly improved patient survival, compared with alkylating agents, in the treatment of unresectable melanoma. Herein, we review the evolution of the treatment of melanoma starting from early discoveries to current therapies. A focus will be provided on drug discovery, synthesis, and mode of action of relevant drugs and the future directions of the domain to overcome the emergence of the resistance events.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Melanoma/terapia , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias Cutáneas/terapia , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Humanos , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Melanoma/inmunología , Metástasis de la Neoplasia , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/epidemiología , Neoplasias Cutáneas/inmunología
6.
Bioorg Med Chem Lett ; 27(10): 2192-2196, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28372910

RESUMEN

We recently described a new family of bioactive molecules with interesting anti-cancer activities: the N-(4-(3-aminophenyl)thiazol-2-yl)acetamides. The lead compound of the series (1) displays significant anti-proliferative and cytotoxic activities against a panel of cancer cell lines, either sensitive or resistant to standard treatments. This molecule also shows a good pharmacological profile and high in vivo potency towards mice xenografts, without signs of toxicity on the animals. In the present article, we disclose the structure-activity relationships of this lead compound, which have provided clear information about the replacement of the acetamide function and the substitution pattern of the benzenesulfonamide ring. An improved high-yielding synthetic procedure towards these compounds has also been developed. Our drug design resulted in potency enhancement of 1, our new optimized lead compound being 19. These findings are of great interest to further improve this scaffold for the development of future clinical candidates.


Asunto(s)
Antineoplásicos/química , Sulfonamidas/química , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Diseño de Fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/toxicidad , Bencenosulfonamidas
7.
Org Biomol Chem ; 12(1): 156-61, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24216754

RESUMEN

The enzyme-directed synthesis is an emerging fragment-based lead discovery approach in which the biological target is able to assemble its own multidentate ligands from a pool of building blocks. Here, we report for the first time the use of the human acetylcholinesterase (AChE) as an enzyme for the design and synthesis of new potent heterodimeric huprine-based inhibitors. Both the specific click chemistry site within the protein and the regioselectivity of the Huisgen cycloaddition observed suggest promising alternatives in the design of efficient mono- and dimeric ligands of AChE. Finally, a detailed computational modelling of the click reaction was conducted to further understand the origin of this TGS selectivity.


Asunto(s)
Acetilcolinesterasa/metabolismo , Aminoquinolinas/farmacología , Inhibidores de la Colinesterasa/farmacología , Aminoquinolinas/química , Aminoquinolinas/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Química Clic , Ciclización , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Proteínas Recombinantes/metabolismo , Estereoisomerismo
8.
Biochem J ; 453(3): 393-9, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23679855

RESUMEN

The multifunctional nature of Alzheimer's disease calls for MTDLs (multitarget-directed ligands) to act on different components of the pathology, like the cholinergic dysfunction and amyloid aggregation. Such MTDLs are usually on the basis of cholinesterase inhibitors (e.g. tacrine or huprine) coupled with another active molecule aimed at a different target. To aid in the design of these MTDLs, we report the crystal structures of hAChE (human acetylcholinesterase) in complex with FAS-2 (fasciculin 2) and a hydroxylated derivative of huprine (huprine W), and of hBChE (human butyrylcholinesterase) in complex with tacrine. Huprine W in hAChE and tacrine in hBChE reside in strikingly similar positions highlighting the conservation of key interactions, namely, π-π/cation-π interactions with Trp86 (Trp82), and hydrogen bonding with the main chain carbonyl of the catalytic histidine residue. Huprine W forms additional interactions with hAChE, which explains its superior affinity: the isoquinoline moiety is associated with a group of aromatic residues (Tyr337, Phe338 and Phe295 not present in hBChE) in addition to Trp86; the hydroxyl group is hydrogen bonded to both the catalytic serine residue and residues in the oxyanion hole; and the chlorine substituent is nested in a hydrophobic pocket interacting strongly with Trp439. There is no pocket in hBChE that is able to accommodate the chlorine substituent.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Aminoquinolinas/química , Inhibidores de la Colinesterasa/química , Colinesterasas/química , Colinesterasas/metabolismo , Cristalografía por Rayos X/métodos , Tacrina/química , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Aminoquinolinas/farmacología , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Colinesterasas/farmacología , Humanos
9.
ChemMedChem ; 19(3): e202300493, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38126619

RESUMEN

Amidinoureas are an understudied class of molecules with unique structural properties and biological activities. A simple methodology has been developed for the synthesis of aliphatic substituted amidinoureas via unexpected cycle opening of benzothiazolo-1,3,5-triazine-2-ones and transamination reaction of N-(N-(benzo[d]thiazol-2-yl)carbamimidoyl)aniline-1-carboxamide in good yields. A novel series of amidinoureas derivatives was designed, synthesized, and evaluated for its antiproliferative activity on an aggressive metastatic melanoma A375 cell line model. This evaluation reveals antiproliferative activities in the low micromolar range and establishes a first structure-activity relationship. In addition, analogues selected for their structural diversity were assayed on a panel of cancer cell lines through the DTP-NCI60, on which they showed effectiveness on various cancer types, with promising activities on melanoma cells for two hit compounds. This work paves the way for further optimization of this family of compounds towards the development of potent antimelanoma agents.


Asunto(s)
Antineoplásicos , Guanidina/análogos & derivados , Melanoma , Urea/análogos & derivados , Humanos , Línea Celular Tumoral , Antineoplásicos/química , Triazinas/química , Relación Estructura-Actividad , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular
10.
ACS Med Chem Lett ; 15(6): 845-856, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38894897

RESUMEN

CXCR1/2 biomolecules play vital roles in cancer cell proliferation, tumor inflammation, and angiogenesis, making them attractive drug targets. In clear cell renal cell carcinoma (RCC) and head and neck squamous cell carcinoma (HNSCC), where CXCR1/2 is overexpressed, inhibition studies are limited. Building upon previous research efforts, we investigated new N,N'-diarylurea analogues as ELR+CXCL-CXCR1/2 inhibitors. Evaluations on RCC and HNSCC cell lines and 3D spheroid cultures identified compound 10 as a lead molecule, exhibiting significant inhibition of invasion, migration, and neo-angiogenesis. It demonstrated strong interference with the signaling pathway, with high selectivity toward kinases. In vivo studies on zebrafish embryos and RCC xenografted mice showed notable anticancer, antimetastatic, and antiangiogenic effects after oral administration and minimal toxicity. Compound 10 emerges as a promising candidate for further preclinical development as an oral anticancer and antiangiogenic drug targeting the ELR+CXCL-CXCR1/2 pathway.

11.
J Exp Clin Cancer Res ; 43(1): 86, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504270

RESUMEN

BACKGROUND: In clear cell renal cell carcinoma (ccRCC), first-line treatment combines nivolumab (anti-PD-1) and ipilimumab (anti-CTLA4), yielding long-term remissions but with only a 40% success rate. Our study explored the potential of enhancing ccRCC treatment by concurrently using CXCR2 inhibitors alongside immunotherapies. METHODS: We analyzed ELR + CXCL levels and their correlation with patient survival during immunotherapy. RCT001, a unique CXCR2 inhibitor, was examined for its mechanism of action, particularly its effects on human primary macrophages. We tested the synergistic impact of RCT001 in combination with immunotherapies in both mouse models of ccRCC and human ccRCC in the presence of human PBMC. RESUTS: Elevated ELR + CXCL cytokine levels were found to correlate with reduced overall survival during immunotherapy. RCT001, our optimized compound, acted as an inverse agonist, effectively inhibiting angiogenesis and reducing viability of primary ccRCC cells. It redirected M2-like macrophages without affecting M1-like macrophage polarization directed against the tumor. In mouse models, RCT001 enhanced the efficacy of anti-CTLA4 + anti-PD1 by inhibiting tumor-associated M2 macrophages and tumor-associated neutrophils. It also impacted the activation of CD4 T lymphocytes, reducing immune-tolerant lymphocytes while increasing activated natural killer and dendritic cells. Similar effectiveness was observed in human RCC tumors when RCT001 was combined with anti-PD-1 treatment. CONCLUSIONS: RCT001, by inhibiting CXCR2 through its unique mechanism, effectively suppresses ccRCC cell proliferation, angiogenesis, and M2 macrophage polarization. This optimization potentiates the efficacy of immunotherapy and holds promise for significantly improving the survival prospects of metastatic ccRCC patients.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Ratones , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Agonismo Inverso de Drogas , Leucocitos Mononucleares/patología , Inmunoterapia
12.
Med Sci (Paris) ; 39(12): 958-966, 2023 Dec.
Artículo en Francés | MEDLINE | ID: mdl-38108727

RESUMEN

The therapeutic management of age-related macular degeneration (AMD) is a major public health issue. One of its two late forms, neovascular AMD, is currently treated by intravitreal injections of pharmaceutical active ingredients. Although it is very effective in treating pathologies of the posterior segment of the eye, the intravitreal route is not an ideal option for the long-term management of a chronic disease such as AMD. Indeed, in the literature, some authors even call it a "burden" for the practitioners, the patients and the healthcare system. Thus, consideration should be given to less invasive routes. Among the possible administration routes to reach the posterior segment of the eye, the most suitable for the patient with the least risk of systemic adverse effects is the topical route. Several research teams have attempted to formulate molecules for topical administration in the treatment of atrophic or neovascular AMD. In this review, we emphasize the importance of the pharmaceutical formulation to meet the challenge of targeting the posterior segment of the eye by a topical route.


Title: Traitement topique de la dégénérescence maculaire liée à l'âge - Où en sommes-nous ? Abstract: La prise en charge thérapeutique de la dégénérescence maculaire liée à l'âge (DMLA) est un enjeu majeur de santé publique. L'une de ses deux formes tardives, la DMLA néovasculaire, est actuellement traitée par injection intravitréenne de molécules anti-angiogéniques. Bien qu'elle soit très efficace pour traiter les atteintes du segment postérieur de l'œil, la voie intravitréenne n'est pas une option idéale pour la prise en charge au long cours d'une maladie chronique telle que la DMLA. L'administration topique de molécules actives contre cette maladie, plus confortable pour le patient et moins coûteuse pour la société, représente un vrai défi.


Asunto(s)
Inhibidores de la Angiogénesis , Degeneración Macular Húmeda , Humanos , Factor A de Crecimiento Endotelial Vascular , Agudeza Visual , Administración Tópica
13.
Cells ; 11(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36497191

RESUMEN

Medulloblastoma (MB) is the most common and aggressive paediatric brain tumour. Although the cure rate can be as high as 70%, current treatments (surgery, radio- and chemotherapy) excessively affect the patients' quality of life. Relapses cannot be controlled by conventional or targeted treatments and are usually fatal. The strong heterogeneity of the disease (four subgroups and several subtypes) is related to innate or acquired resistance to reference treatments. Therefore, more efficient and less-toxic therapies are needed. Here, we demonstrated the efficacy of a novel inhibitor (C29) of CXCR1/2 receptors for ELR+CXCL cytokines for the treatment of childhood MB. The correlation between ELR+CXCL/CXCR1/2 expression and patient survival was determined using the R2: Genomics Analysis and Visualization platform. In vitro efficacy of C29 was evaluated by its ability to inhibit proliferation, migration, invasion, and pseudo-vessel formation of MB cell lines sensitive or resistant to radiotherapy. The growth of experimental MB obtained by MB spheroids on organotypic mouse cerebellar slices was also assayed. ELR+CXCL/CXCR1/2 levels correlated with shorter survival. C29 inhibited proliferation, clone formation, CXCL8/CXCR1/2-dependent migration, invasion, and pseudo-vessel formation by sensitive and radioresistant MB cells. C29 reduced experimental growth of MB in the ex vivo organotypic mouse model and crossed the blood-brain barrier. Targeting CXCR1/2 represents a promising therapeutic strategy for the treatment of paediatric MB in first-line treatment or after relapse following conventional therapy.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Animales , Ratones , Neoplasias Cerebelosas/tratamiento farmacológico , Meduloblastoma/tratamiento farmacológico , Recurrencia Local de Neoplasia , Calidad de Vida , Receptores de Interleucina-8A/metabolismo , Humanos , Niño
14.
Eur J Med Chem ; 224: 113726, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34364161

RESUMEN

Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.


Asunto(s)
Biguanidas/uso terapéutico , Descubrimiento de Drogas/métodos , Hipoglucemiantes/uso terapéutico , Biguanidas/farmacología , Humanos , Hipoglucemiantes/farmacología , Estructura Molecular
15.
Future Med Chem ; 13(14): 1157-1173, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34096325

RESUMEN

Background: In line with our recent discovery of an efficient anticancer thiazolebenzenesulfonamide framework HA15 (1) based on a remarkable endoplasmic reticulum stress inducement mode of action, we report herein a series of innovative constrained HA15 analogs, featuring four types of bicylic derivatives. Results: The structure-activity relationship analysis, using a cell line assay, led us to identify a novel version of HA15: a new benzothiazole derivative (10b) exhibiting important anti-melanoma effect against sensitive and resistant melanoma cells. Meanwhile, compound 10b induced a significant tumor growth inhibition in vivo with no apparent signs of toxicity. Conclusion: These results consistently open new directions to improve and develop more powerful anticancer therapeutics harboring this type of fused framework.


Asunto(s)
Antineoplásicos/uso terapéutico , Benzotiazoles/química , Melanoma/tratamiento farmacológico , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Benzotiazoles/farmacología , Benzotiazoles/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Melanoma/patología , Ratones , Ratones Desnudos , Relación Estructura-Actividad , Trasplante Heterólogo
16.
Biochem Biophys Rep ; 27: 101098, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34430714

RESUMEN

The chemokine receptors CXCR1/2 play a key role in the aggressiveness of several types of cancers including head and neck squamous cell carcinomas (HNSCCs). In HNSCCs, CXCR1/2 signaling promotes cell proliferation and angiogenesis leading to tumor growth and metastasis. The competitive inhibitor of CXCR1/2, C29, inhibits the growth of experimental HNSCCs in mice. However, a non-invasive tool to monitor treatment response is essential to implement the use of C29 in clinical practices. 18F-FDG PET/CT is a gold-standard tool for the staging and the post-therapy follow-up of HNSCCs patients. Our study aimed to perform the first in vivo monitoring of C29 efficacy by non-invasive 18F-FDG PET/CT imaging. Mice bearing experimental HNSCCs (CAL33) were injected with 18F-FDG (T0) and thereafter treated (n = 7 mice, 9 tumors, 50 mg/kg by gavage) or not (n = 7 mice, 10 tumors) with C29 for 4 consecutive days. Final 18F-FDG-tumor uptake was determined at day 4 (TF). The average relative change (TF-T0) in 18F-FDG tumor uptake was +25.85 ± 10.93 % in the control group vs -5.72 ± 10.07 % in the C29-treated group (p < 0.01). These results were consistent with the decrease of the tumor burden and with the decrease of tumor proliferating Ki67+ cells. These results paved the way for the use of 18F-FDG to monitor tumor response following C29 treatment.

17.
Cell Death Dis ; 12(1): 64, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431809

RESUMEN

In the search of biguanide-derived molecules against melanoma, we have discovered and developed a series of bioactive products and identified the promising new compound CRO15. This molecule exerted anti-melanoma effects on cells lines and cells isolated from patients including the ones derived from tumors resistant to BRAF inhibitors. Moreover, CRO15 was able to decrease viability of cells lines from a broad range of cancer types. This compound acts by two distinct mechanisms. First by activating the AMPK pathway induced by a mitochondrial disorder. Second by inhibition of MELK kinase activity, which induces cell cycle arrest and activation of DNA damage repair pathways by p53 and REDD1 activation. All of these mechanisms activate autophagic and apoptotic processes resulting in melanoma cell death. The strong efficacy of CRO15 to reduce the growth of melanoma xenograft sensitive or resistant to BRAF inhibitors opens interesting perspective.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Melanoma/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Muerte Celular , Proliferación Celular , Humanos , Melanoma/patología , Transducción de Señal
18.
Anal Bioanal Chem ; 397(5): 1733-42, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20033138

RESUMEN

Microcystins (MCs), a group of cyclic heptapeptides produced by common cyanobacteria (blue green algae), cause both acute and chronic toxicity. Due to their toxicity, constant monitoring in drinking water, recreational waters as well as other potential exposure through ingestion of contaminated sea food, is very important. In this context, an immunochromatographic test (ICT) using a monoclonal antibody labeled with fluorescent liposomes (immunoliposomes) as tracer was developed, allowing a rapid and simple detection of a large number of MC and nodularin variants in field samples. The present ICT using immunoliposomes proved to be ten times more sensitive than the ICT using colloidal gold for labeling. To achieve quantitative measurement, this ICT was improved by including a stable signal on the control band allowing the expression of the results as a ratio of the fluorescence signals of the specific band versus the control band (SB/CB). Very low concentrations of MC-LR were detected in the analysis buffer (0.06 ng/ml), well below the guideline value of 1 ng/ml proposed by the World Health Organization (WHO), with a dynamic range from 0.06 to 1.5 ng/ml of MC-LR. This method was also validated using a hand-held commercial fluorometer (from ESE), providing the same performances obtained via the analysis station (from Kodak) used in our laboratory. Repeatability tests performed with both devices showed good accuracy (CV < 13%). Furthermore, quantification of MCs in natural samples (water bloom and Microcystis culture) was achieved using ICT, leading to similar results obtained via an EIA previously described. All these results demonstrate that this new fluorescent ICT could be used not only as a sensitive detection tool but also to quantify MCs in field samples.


Asunto(s)
Cianobacterias/química , Técnica del Anticuerpo Fluorescente/métodos , Microcistinas/análisis , Péptidos Cíclicos/análisis , Técnica del Anticuerpo Fluorescente/instrumentación , Liposomas/química
19.
ChemMedChem ; 15(13): 1113-1117, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32347004

RESUMEN

Sulfonylguanidines are interesting bioactive compounds with a broad range of applications in the treatment of different pathologies. 2-Aminobenzazole-based structures are well employed in the development of new anticancer drugs. Two series of novel N-benzazol-2-yl-N'-sulfonyl guanidine derivatives were synthesized with the sulfonylguanidine in either an extra- or intracyclic frame. They were evaluated for their antiproliferative activity against malignant melanoma tumor cells, thus allowing structure-activity relationships to be defined. Additionally, NCI-60 screening was performed for the best analogue to study its efficiency against a panel of other cancer cell lines. The stability profile of this promising compound was then validated. During the synthetic process, an unexpected new deamidination of the sulfonylguanidine towards sulfonamide function was also identified.


Asunto(s)
Antineoplásicos/farmacología , Guanidina/análogos & derivados , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Guanidina/síntesis química , Guanidina/química , Guanidina/farmacología , Humanos , Concentración de Iones de Hidrógeno , Melanoma/patología , Simulación del Acoplamiento Molecular , Estructura Molecular , Neoplasias Cutáneas/patología , Relación Estructura-Actividad
20.
Bioorg Med Chem ; 17(13): 4523-36, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19473849

RESUMEN

New series of Huprine (12-amino-6,7,10,11-tetrahydro-7,11-methanocycloocta[b]quinolines) derivatives have been synthesized and their inhibiting activities toward recombinant human acetylcholinesterase (rh-AChE) are reported. We have synthesized two series of Huprine analogues; in the first one, the benzene ring of the quinoline moiety has been replaced by different heterocycles or electron-withdrawing or electron-donating substituted phenyl group. The second one has been designed in order to evaluate the influence of modification at position 12 where different short linkers have been introduced on the Huprine X, Y skeletons. All these molecules have been prepared from ethyl- or methyl-bicyclo[3.3.1]non-6-en-3-one via Friedländer reaction involving selected o-aminocyano aromatic compounds. The synthesis of two heterodimers based on these Huprines has been also reported. Activities from moderate to same range than the most active Huprines X and Y taken as references have been obtained, the most potent analogue being about three times less active than parent Huprines X and Y. Topologic data have been inferred from molecular dockings and variations of activity between the different linkers suggest future structural modifications for activity improvement.


Asunto(s)
Acetilcolinesterasa/metabolismo , Aminoquinolinas/química , Aminoquinolinas/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Relación Estructura-Actividad , Acetilcolinesterasa/química , Aminoquinolinas/síntesis química , Inhibidores de la Colinesterasa/síntesis química , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA