Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Manage ; 56(6): 1397-415, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26122631

RESUMEN

The biomass supply chain is one of the most critical elements of large-scale bioenergy production and in many cases a key barrier for procuring initial funding for new developments on specific energy crops. Most productions rely on complex transforming chains linked to feed and food markets. The term 'supply chain' covers various aspects from cultivation and harvesting of the biomass, to treatment, transportation, and storage. After energy conversion, the product must be delivered to final consumption, whether it is in the form of electricity, heat, or more tangible products, such as pellets and biofuels. Effective supply chains are of utmost importance for bioenergy production, as biomass tends to possess challenging seasonal production cycles and low mass, energy and bulk densities. Additionally, the demand for final products is often also dispersed, further complicating the supply chain. The goal of this paper is to introduce key components of biomass supply chains, examples of related modeling applications, and if/how they address aspects related to environmental metrics and management. The paper will introduce a concept of integrated supply systems for sustainable biomass trade and the factors influencing the bioenergy supply chain landscape, including models that can be used to investigate the factors. The paper will also cover various aspects of transportation logistics, ranging from alternative modal and multi-modal alternatives to introduction of support tools for transportation analysis. Finally gaps and challenges in supply chain research are identified and used to outline research recommendations for the future direction in this area of study.


Asunto(s)
Agricultura/métodos , Biocombustibles/provisión & distribución , Biomasa , Conservación de los Recursos Energéticos , Transportes , Agricultura/tendencias , Productos Agrícolas , Humanos , Modelos Teóricos
2.
Sci Rep ; 13(1): 6813, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100831

RESUMEN

Biofuels made from biomass and waste residues will largely contribute to United States' 2050 decarbonization goal in the aviation sector. While cellulosic biofuels have the potential fuel performance equivalent to petroleum-based jet fuel, the biofuel industry needs to overcome the supply chain barrier caused by temporal and spatial variability of biomass yield and quality. This study highlights the importance of incorporating spatial and temporal variability during biomass supply chain planning via optimization modeling that incorporates 10 years of drought index data, a primary factor contributing to yield and quality variability. The results imply that the cost of delivering biomass to biorefinery may be significantly underestimated if the multi-year temporal and spatial variation in biomass yield and quality is not captured. For long term sustainable biorefinery operations, the industry should optimize supply chain strategy by studying the variability of yield and quality of biomass in their supply sheds.

3.
Bioresour Technol ; 194: 205-13, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26196421

RESUMEN

Decentralized biomass processing facilities, known as biomass depots, may be necessary to achieve feedstock cost, quantity, and quality required to grow the future U.S. bioeconomy. In this paper, we assess three distinct depot configurations for technical difference and economic performance. The depot designs were chosen to compare and contrast a suite of capabilities that a depot could perform ranging from conventional pelleting to sophisticated pretreatment technologies. Our economic analyses indicate that depot processing costs are likely to range from ∼US$30 to US$63 per dry metric tonne (Mg), depending upon the specific technology implemented and the energy consumption for processing equipment such as grinders and dryers. We conclude that the benefits of integrating depots into the overall biomass feedstock supply chain will outweigh depot processing costs and that incorporation of this technology should be aggressively pursued.


Asunto(s)
Biomasa , Biotecnología/economía , Biotecnología/métodos , Ácidos/química , Amoníaco/química , Costos y Análisis de Costo , Humedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA