Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
N Engl J Med ; 389(7): 620-631, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37585628

RESUMEN

BACKGROUND: Patients with the Crigler-Najjar syndrome lack the enzyme uridine diphosphoglucuronate glucuronosyltransferase 1A1 (UGT1A1), the absence of which leads to severe unconjugated hyperbilirubinemia that can cause irreversible neurologic injury and death. Prolonged, daily phototherapy partially controls the jaundice, but the only definitive cure is liver transplantation. METHODS: We report the results of the dose-escalation portion of a phase 1-2 study evaluating the safety and efficacy of a single intravenous infusion of an adeno-associated virus serotype 8 vector encoding UGT1A1 in patients with the Crigler-Najjar syndrome that was being treated with phototherapy. Five patients received a single infusion of the gene construct (GNT0003): two received 2×1012 vector genomes (vg) per kilogram of body weight, and three received 5×1012 vg per kilogram. The primary end points were measures of safety and efficacy; efficacy was defined as a serum bilirubin level of 300 µmol per liter or lower measured at 17 weeks, 1 week after discontinuation of phototherapy. RESULTS: No serious adverse events were reported. The most common adverse events were headache and alterations in liver-enzyme levels. Alanine aminotransferase increased to levels above the upper limit of the normal range in four patients, a finding potentially related to an immune response against the infused vector; these patients were treated with a course of glucocorticoids. By week 16, serum bilirubin levels in patients who received the lower dose of GNT0003 exceeded 300 µmol per liter. The patients who received the higher dose had bilirubin levels below 300 µmol per liter in the absence of phototherapy at the end of follow-up (mean [±SD] baseline bilirubin level, 351±56 µmol per liter; mean level at the final follow-up visit [week 78 in two patients and week 80 in the other], 149±33 µmol per liter). CONCLUSIONS: No serious adverse events were reported in patients treated with the gene-therapy vector GNT0003 in this small study. Patients who received the higher dose had a decrease in bilirubin levels and were not receiving phototherapy at least 78 weeks after vector administration. (Funded by Genethon and others; ClinicalTrials.gov number, NCT03466463.).


Asunto(s)
Síndrome de Crigler-Najjar , Terapia Genética , Glucuronosiltransferasa , Humanos , Administración Intravenosa , Bilirrubina/sangre , Síndrome de Crigler-Najjar/sangre , Síndrome de Crigler-Najjar/complicaciones , Síndrome de Crigler-Najjar/genética , Síndrome de Crigler-Najjar/terapia , Dependovirus , Terapia Genética/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Glucuronosiltransferasa/administración & dosificación , Glucuronosiltransferasa/genética , Hiperbilirrubinemia/sangre , Hiperbilirrubinemia/etiología , Hiperbilirrubinemia/genética , Hiperbilirrubinemia/terapia , Trasplante de Hígado , Fototerapia
2.
Am J Hum Genet ; 109(8): 1534-1548, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35905737

RESUMEN

Familial dysautonomia (FD) is a currently untreatable, neurodegenerative disease caused by a splicing mutation (c.2204+6T>C) that causes skipping of exon 20 of the elongator complex protein 1 (ELP1) pre-mRNA. Here, we used adeno-associated virus serotype 9 (AAV9-U1-FD) to deliver an exon-specific U1 (ExSpeU1) small nuclear RNA, designed to cause inclusion of ELP1 exon 20 only in those cells expressing the target pre-mRNA, in a phenotypic mouse model of FD. Postnatal systemic and intracerebral ventricular treatment in these mice increased the inclusion of ELP1 exon 20. This also augmented the production of functional protein in several tissues including brain, dorsal root, and trigeminal ganglia. Crucially, the treatment rescued most of the FD mouse mortality before one month of age (89% vs 52%). There were notable improvements in ataxic gait as well as renal (serum creatinine) and cardiac (ejection fraction) functions. RNA-seq analyses of dorsal root ganglia from treated mice and human cells overexpressing FD-ExSpeU1 revealed only minimal global changes in gene expression and splicing. Overall then, our data prove that AAV9-U1-FD is highly specific and will likely be a safe and effective therapeutic strategy for this debilitating disease.


Asunto(s)
Disautonomía Familiar , Enfermedades Neurodegenerativas , Animales , Modelos Animales de Enfermedad , Disautonomía Familiar/genética , Exones/genética , Humanos , Ratones , Enfermedades Neurodegenerativas/genética , Precursores del ARN/genética , Empalme del ARN/genética , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo
3.
Gene Ther ; 30(3-4): 245-254, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-33456057

RESUMEN

Von Willebrand disease (VWD), the most common inherited bleeding disorder in humans, is caused by quantitative or qualitative defects in von Willebrand factor (VWF). VWD represents a potential target for gene therapy applications, as a single treatment could potentially result in a long-term correction of the disease. In recent years, several liver-directed gene therapy approaches have been exploited for VWD, but their efficacy was generally limited by the large size of the VWF transgene and the reduced hemostatic activity of the protein produced from hepatocytes. In this context, we aimed at developing a gene therapy strategy for gene delivery into endothelial cells, the natural site of biosynthesis of VWF. We optimized an endothelial-specific dual hybrid AAV vector, in which the large VWF cDNA was put under the control of an endothelial promoter and correctly reconstituted upon cell transduction by a combination of trans-splicing and homologous recombination mechanisms. In addition, we modified the AAV vector capsid by introducing an endothelial-targeting peptide to improve the efficiency for endothelial-directed gene transfer. This vector platform allowed the reconstitution of full-length VWF transgene both in vitro in human umbilical vein endothelial cells and in vivo in VWD mice, resulting in long-term expression of VWF.


Asunto(s)
Enfermedades de von Willebrand , Factor de von Willebrand , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Enfermedades de von Willebrand/genética , Enfermedades de von Willebrand/metabolismo , Enfermedades de von Willebrand/terapia , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo , Vectores Genéticos
4.
Mol Ther ; 30(9): 2952-2967, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-35546782

RESUMEN

The COVID-19 pandemic continues to have devastating consequences on health and economy, even after the approval of safe and effective vaccines. Waning immunity, the emergence of variants of concern, breakthrough infections, and lack of global vaccine access and acceptance perpetuate the epidemic. Here, we demonstrate that a single injection of an adenoassociated virus (AAV)-based COVID-19 vaccine elicits at least 17-month-long neutralizing antibody responses in non-human primates at levels that were previously shown to protect from viral challenge. To improve the scalability of this durable vaccine candidate, we further optimized the vector design for greater potency at a reduced dose in mice and non-human primates. Finally, we show that the platform can be rapidly adapted to other variants of concern to robustly maintain immunogenicity and protect from challenge. In summary, we demonstrate this class of AAV can provide durable immunogenicity, provide protection at dose that is low and scalable, and be adapted readily to novel emerging vaccine antigens thus may provide a potent tool in the ongoing fight against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).


Asunto(s)
COVID-19 , Vacunas Virales , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Dependovirus/genética , Humanos , Macaca , Ratones , Pandemias/prevención & control , SARS-CoV-2/genética
5.
Mol Ther ; 29(10): 3072-3092, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34058387

RESUMEN

A common feature of diverse brain disorders is the alteration of GABA-mediated inhibition because of aberrant, intracellular chloride homeostasis induced by changes in the expression and/or function of chloride transporters. Notably, pharmacological inhibition of the chloride importer NKCC1 is able to rescue brain-related core deficits in animal models of these pathologies and in some human clinical studies. Here, we show that reducing NKCC1 expression by RNA interference in the Ts65Dn mouse model of Down syndrome (DS) restores intracellular chloride concentration, efficacy of gamma-aminobutyric acid (GABA)-mediated inhibition, and neuronal network dynamics in vitro and ex vivo. Importantly, adeno-associated virus (AAV)-mediated, neuron-specific NKCC1 knockdown in vivo rescues cognitive deficits in diverse behavioral tasks in Ts65Dn animals. Our results highlight a mechanistic link between NKCC1 expression and behavioral abnormalities in DS mice and establish a molecular target for new therapeutic approaches, including gene therapy, to treat brain disorders characterized by neuronal chloride imbalance.


Asunto(s)
Síndrome de Down/terapia , Terapia Genética/métodos , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Animales , Cloruros/metabolismo , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/psicología , Técnicas de Silenciamiento del Gen , Homeostasis , Masculino , Ratones , Neuronas/metabolismo , Interferencia de ARN
6.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-35682977

RESUMEN

Pompe disease (PD) is a rare disorder caused by mutations in the acid alpha-glucosidase (GAA) gene. Most gene therapies (GT) partially rely on the cross-correction of unmodified cells through the uptake of the GAA enzyme secreted by corrected cells. In the present study, we generated isogenic murine GAA-KO cell lines resembling severe mutations from Pompe patients. All of the generated GAA-KO cells lacked GAA activity and presented an increased autophagy and increased glycogen content by means of myotube differentiation as well as the downregulation of mannose 6-phosphate receptors (CI-MPRs), validating them as models for PD. Additionally, different chimeric murine GAA proteins (IFG, IFLG and 2G) were designed with the aim to improve their therapeutic activity. Phenotypic rescue analyses using lentiviral vectors point to IFG chimera as the best candidate in restoring GAA activity, normalising the autophagic marker p62 and surface levels of CI-MPRs. Interestingly, in vivo administration of liver-directed AAVs expressing the chimeras further confirmed the good behaviour of IFG, achieving cross-correction in heart tissue. In summary, we generated different isogenic murine muscle cell lines mimicking the severe PD phenotype, as well as validating their applicability as preclinical models in order to reduce animal experimentation.


Asunto(s)
Dependovirus , Enfermedad del Almacenamiento de Glucógeno Tipo II , Animales , Línea Celular , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Humanos , Ratones , Ratones Noqueados , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Mutación , alfa-Glucosidasas/metabolismo
7.
J Inherit Metab Dis ; 44(3): 521-533, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33368379

RESUMEN

Glycogen storage disorder type III (GSDIII) is a rare inborn error of metabolism due to loss of glycogen debranching enzyme activity, causing inability to fully mobilize glycogen stores and its consequent accumulation in various tissues, notably liver, cardiac and skeletal muscle. In the pediatric population, it classically presents as hepatomegaly with or without ketotic hypoglycemia and failure to thrive. In the adult population, it should also be considered in the differential diagnosis of left ventricular hypertrophy or hypertrophic cardiomyopathy, myopathy, exercise intolerance, as well as liver cirrhosis or fibrosis with subsequent liver failure. In this review article, we first present an overview of the biochemical and clinical aspects of GSDIII. We then focus on the recent findings regarding cardiac and neuromuscular impairment associated with the disease. We review new insights into the pathophysiology and clinical picture of this disorder, including symptomatology, imaging and electrophysiology. Finally, we discuss current and upcoming treatment strategies such as gene therapy aimed at the replacement of the malfunctioning enzyme to provide a stable and long-term therapeutic option for this debilitating disease.


Asunto(s)
Terapia Genética/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo III/terapia , Músculo Esquelético/fisiopatología , Adulto , Animales , Niño , Modelos Animales de Enfermedad , Enfermedad del Almacenamiento de Glucógeno Tipo III/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo III/fisiopatología , Hepatomegalia/metabolismo , Humanos , Hipoglucemia/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo
8.
Mol Ther ; 28(2): 642-652, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31495777

RESUMEN

Glial cell-derived neurotrophic factor (GDNF) has a potent action in promoting the survival of dopamine (DA) neurons. Several studies indicate that increasing GDNF levels may be beneficial for the treatment of Parkinson's disease (PD) by reducing neurodegeneration of DA neurons. Despite a plethora of preclinical studies showing GDNF efficacy in PD animal models, its application in humans remains questionable for its poor efficacy and side effects due to its uncontrolled, ectopic expression. Here we took advantage of SINEUPs, a new class of antisense long non-coding RNA, that promote translation of partially overlapping sense protein-coding mRNAs with no effects on their mRNA levels. By synthesizing a SINEUP targeting Gdnf mRNA, we were able to increase endogenous GDNF protein levels by about 2-fold. Adeno-associated virus (AAV)9-mediated delivery in the striatum of wild-type (WT) mice led to an increase of endogenous GDNF protein for at least 6 months and the potentiation of the DA system's functions while showing no side effects. Furthermore, SINEUP-GDNF was able to ameliorate motor deficits and neurodegeneration of DA neurons in a PD neurochemical mouse model. Our data indicate that SINEUP-GDNF could represent a new strategy to increase endogenous GDNF protein levels in a more physiological manner for therapeutic treatments of PD.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Neuronas Motoras/metabolismo , Enfermedad de Parkinson/genética , Interferencia de ARN , ARN no Traducido/genética , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Dependovirus/genética , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Regulación de la Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Inmunohistoquímica , Ratones , Neuronas Motoras/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fenotipo
9.
Mol Ther ; 28(9): 2056-2072, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32526204

RESUMEN

Pompe disease is a neuromuscular disorder caused by disease-associated variants in the gene encoding for the lysosomal enzyme acid α-glucosidase (GAA), which converts lysosomal glycogen to glucose. We previously reported full rescue of Pompe disease in symptomatic 4-month-old Gaa knockout (Gaa-/-) mice by adeno-associated virus (AAV) vector-mediated liver gene transfer of an engineered secretable form of GAA (secGAA). Here, we showed that hepatic expression of secGAA rescues the phenotype of 4-month-old Gaa-/- mice at vector doses at which the native form of GAA has little to no therapeutic effect. Based on these results, we then treated severely affected 9-month-old Gaa-/- mice with an AAV vector expressing secGAA and followed the animals for 9 months thereafter. AAV-treated Gaa-/- mice showed complete reversal of the Pompe phenotype, with rescue of glycogen accumulation in most tissues, including the central nervous system, and normalization of muscle strength. Transcriptomic profiling of skeletal muscle showed rescue of most altered pathways, including those involved in mitochondrial defects, a finding supported by structural and biochemical analyses, which also showed restoration of lysosomal function. Together, these results provide insight into the reversibility of advanced Pompe disease in the Gaa-/- mouse model via liver gene transfer of secGAA.


Asunto(s)
Terapia Genética/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo II/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Hígado/metabolismo , Vías Secretoras/genética , Transfección/métodos , alfa-Glucosidasas/metabolismo , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos/administración & dosificación , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Lisosomas/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Fenotipo , Transducción de Señal/genética , Transcriptoma , Resultado del Tratamiento , alfa-Glucosidasas/genética
10.
J Hepatol ; 71(1): 153-162, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30935993

RESUMEN

BACKGROUND & AIMS: Progressive familial intrahepatic cholestasis type 3 (PFIC3), for which there are limited therapeutic options, often leads to end-stage liver disease before adulthood due to impaired ABCB4-dependent phospholipid transport to bile. Using adeno-associated virus serotype 8 (AAV8)-mediated gene therapy, we aimed to restore the phospholipid content in bile to levels that prevent liver damage, thereby enabling stable hepatic ABCB4 expression and long-term correction of the phenotype in a murine model of PFIC3. METHODS: Ten-week-old Abcb4-/- mice received a single dose of AAV8-hABCB4 (n = 10) or AAV8-GFP (n = 7) under control of a liver specific promoter via tail vein injection. Animals were sacrificed either 10 or 26 weeks after vector administration to assess transgene persistence, after being challenged with a 0.1% cholate diet for 2 weeks. Periodic evaluation of plasma cholestatic markers was performed and bile duct cannulation enabled analysis of biliary phospholipids. Liver fibrosis and the Ki67 proliferation index were assessed by immunohistochemistry. RESULTS: Stable transgene expression was achieved in all animals that received AAV8-hABCB4 up to 26 weeks after administration. AAV8-hABCB4 expression restored biliary phospholipid excretion, increasing the phospholipid and cholesterol content in bile to levels that ameliorate liver damage. This resulted in normalization of the plasma cholestatic markers, alkaline phosphatase and bilirubin. In addition, AAV8-hABCB4 prevented progressive liver fibrosis and reduced hepatocyte proliferation for the duration of the study. CONCLUSION: Liver-directed gene therapy provides stable hepatic ABCB4 expression and long-term correction of the phenotype in a murine model of PFIC3. Translational studies that verify the clinical feasibility of this approach are warranted. LAY SUMMARY: Progressive familial intrahepatic cholestasis type 3 (PFIC3) is a severe genetic liver disease that results from impaired transport of lipids to bile, which makes the bile toxic to liver cells. Because therapeutic options are currently limited, this study aims to evaluate gene therapy to correct the underlying genetic defect in a mouse model of this disease. By introducing a functional copy of the missing gene in liver cells of mice, we were able to restore lipid transport to bile and strongly reduce damage to the liver. The proliferation of liver cells was also reduced, which contributes to long-term correction of the phenotype. Further studies are required to evaluate whether this approach can be applied to patients with PFIC3.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Bilis/metabolismo , Colestasis Intrahepática , Terapia Genética/métodos , Cirrosis Hepática/metabolismo , Fosfolípidos/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Animales , Colestasis Intrahepática/genética , Colestasis Intrahepática/terapia , Dependovirus , Ratones , Ratones Transgénicos , Vías Secretoras/fisiología , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
11.
Mol Ther ; 26(3): 890-901, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29396266

RESUMEN

Glycogen storage disease type III (GSDIII) is an autosomal recessive disorder caused by a deficiency of glycogen-debranching enzyme (GDE), which results in profound liver metabolism impairment and muscle weakness. To date, no cure is available for GSDIII and current treatments are mostly based on diet. Here we describe the development of a mouse model of GSDIII, which faithfully recapitulates the main features of the human condition. We used this model to develop and test novel therapies based on adeno-associated virus (AAV) vector-mediated gene transfer. First, we showed that overexpression of the lysosomal enzyme alpha-acid glucosidase (GAA) with an AAV vector led to a decrease in liver glycogen content but failed to reverse the disease phenotype. Using dual overlapping AAV vectors expressing the GDE transgene in muscle, we showed functional rescue with no impact on glucose metabolism. Liver expression of GDE, conversely, had a direct impact on blood glucose levels. These results provide proof of concept of correction of GSDIII with AAV vectors, and they indicate that restoration of the enzyme deficiency in muscle and liver is necessary to address both the metabolic and neuromuscular manifestations of the disease.


Asunto(s)
Terapia Genética , Sistema de la Enzima Desramificadora del Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno Tipo III/genética , Enfermedad del Almacenamiento de Glucógeno Tipo III/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Fenotipo , Animales , Biomarcadores , Glucemia , Dependovirus/genética , Modelos Animales de Enfermedad , Activación Enzimática , Expresión Génica , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Glucógeno/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo III/diagnóstico , Enfermedad del Almacenamiento de Glucógeno Tipo III/terapia , Hepatocitos/metabolismo , Masculino , Ratones , Ratones Noqueados , Especificidad de Órganos
12.
Hepatology ; 66(1): 252-265, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28318036

RESUMEN

Use of adeno-associated viral (AAV) vectors for liver-directed gene therapy has shown considerable success, particularly in patients with severe hemophilia B. However, the high vector doses required to reach therapeutic levels of transgene expression caused liver inflammation in some patients that selectively destroyed transduced hepatocytes. We hypothesized that such detrimental immune responses can be avoided by enhancing the efficacy of AAV vectors in hepatocytes. Because autophagy is a key liver response to environmental stresses, we characterized the impact of hepatic autophagy on AAV infection. We found that AAV induced mammalian target of rapamycin (mTOR)-dependent autophagy in human hepatocytes. This cell response was critically required for efficient transduction because under conditions of impaired autophagy (pharmacological inhibition, small interfering RNA knockdown of autophagic proteins, or suppression by food intake), recombinant AAV-mediated transgene expression was markedly reduced, both in vitro and in vivo. Taking advantage of this dependence, we employed pharmacological inducers of autophagy to increase the level of autophagy. This resulted in greatly improved transduction efficiency of AAV vectors in human and mouse hepatocytes independent of the transgene, driving promoter, or AAV serotype and was subsequently confirmed in vivo. Specifically, short-term treatment with a single dose of torin 1 significantly increased vector-mediated hepatic expression of erythropoietin in C57BL/6 mice. Similarly, coadministration of rapamycin with AAV vectors resulted in markedly enhanced expression of human acid-α-glucosidase in nonhuman primates. CONCLUSION: We identified autophagy as a pivotal cell response determining the efficiency of AAVs intracellular processing in hepatocytes and thus the outcome of liver-directed gene therapy using AAV vectors and showed in a proof-of-principle study how this virus-host interaction can be employed to enhance efficacy of this vector system. (Hepatology 2017;66:252-265).


Asunto(s)
Autofagia/genética , Dependovirus/genética , Terapia Genética/métodos , Hepatocitos/citología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos , Ratones , Ratones Endogámicos C57BL , Distribución Aleatoria , Transducción Genética
13.
J Neurosci ; 34(32): 10603-15, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25100594

RESUMEN

α-Synuclein is thought to regulate neurotransmitter release through multiple interactions with presynaptic proteins, cytoskeletal elements, ion channels, and synaptic vesicles membrane. α-Synuclein is abundant in the presynaptic compartment, and its release from neurons and glia has been described as responsible for spreading of α-synuclein-derived pathology. α-Synuclein-dependent dysregulation of neurotransmitter release might occur via its action on surface-exposed calcium channels. Here, we provide electrophysiological and biochemical evidence to show that α-synuclein, applied to rat neurons in culture or striatal slices, selectively activates Cav2.2 channels, and said activation correlates with increased neurotransmitter release. Furthermore, in vivo perfusion of α-synuclein into the striatum also leads to acute dopamine release. We further demonstrate that α-synuclein reduces the amount of plasma membrane cholesterol and alters the partitioning of Cav2.2 channels, which move from raft to cholesterol-poor areas of the plasma membrane. We provide evidence for a novel mechanism through which α-synuclein acts from the extracellular milieu to modulate neurotransmitter release and propose a unifying hypothesis for the mechanism of α-synuclein action on multiple targets: the reorganization of plasma membrane microdomains.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Dopamina/metabolismo , Microdominios de Membrana/efectos de los fármacos , Neuronas/citología , alfa-Sinucleína/farmacología , Compuestos de Anilina/metabolismo , Animales , Anticuerpos/farmacología , Canales de Calcio Tipo N/inmunología , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Bloqueadores de los Canales de Sodio/farmacología , Ganglio Cervical Superior/citología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Sinaptofisina/metabolismo , Xantenos/metabolismo
14.
15.
Mol Ther Methods Clin Dev ; 32(3): 101327, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39286333

RESUMEN

Adeno-associated virus (AAV) is the most widely used vector for in vivo gene transfer. A major limitation of capsid engineering is the incomplete understanding of the consequences of multiple amino acid variations on AAV capsid stability resulting in high frequency of non-viable capsids. In this context, the study of natural AAV variants can provide valuable insights into capsid regions that exhibit greater tolerance to mutations. Here, the characterization of AAV2 variants and the analysis of two public capsid libraries highlighted common features associated with deleterious mutations, suggesting that the impact of mutations on capsid viability is strictly dependent on their 3D location within the capsid structure. We developed a novel prediction method to infer the fitness of AAV2 variants containing multiple amino acid variations with 98% sensitivity, 98% accuracy, and 95% specificity. This novel approach might streamline the development of AAV vector libraries enriched in viable capsids, thus accelerating the identification of therapeutic candidates among engineered capsids.

16.
J Clin Invest ; 134(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38015640

RESUMEN

Glycogen storage disease type III (GSDIII) is a rare inborn error of metabolism affecting liver, skeletal muscle, and heart due to mutations of the AGL gene encoding for the glycogen debranching enzyme (GDE). No curative treatment exists for GSDIII. The 4.6 kb GDE cDNA represents the major technical challenge toward the development of a single recombinant adeno-associated virus-derived (rAAV-derived) vector gene therapy strategy. Using information on GDE structure and molecular modeling, we generated multiple truncated GDEs. Among them, an N-terminal-truncated mutant, ΔNter2-GDE, had a similar efficacy in vivo compared with the full-size enzyme. A rAAV vector expressing ΔNter2-GDE allowed significant glycogen reduction in heart and muscle of Agl-/- mice 3 months after i.v. injection, as well as normalization of histology features and restoration of muscle strength. Similarly, glycogen accumulation and histological features were corrected in a recently generated Agl-/- rat model. Finally, transduction with rAAV vectors encoding ΔNter2-GDE corrected glycogen accumulation in an in vitro human skeletal muscle cellular model of GSDIII. In conclusion, our results demonstrated the ability of a single rAAV vector expressing a functional mini-GDE transgene to correct the muscle and heart phenotype in multiple models of GSDIII, supporting its clinical translation to patients with GSDIII.


Asunto(s)
Sistema de la Enzima Desramificadora del Glucógeno , Enfermedad del Almacenamiento de Glucógeno Tipo III , Humanos , Ratones , Ratas , Animales , Enfermedad del Almacenamiento de Glucógeno Tipo III/genética , Enfermedad del Almacenamiento de Glucógeno Tipo III/terapia , Sistema de la Enzima Desramificadora del Glucógeno/genética , Músculo Esquelético/metabolismo , Glucógeno/metabolismo , Transgenes
17.
Mol Metab ; 81: 101899, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346589

RESUMEN

OBJECTIVE: Pompe disease (PD) is caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA), leading to progressive glycogen accumulation and severe myopathy with progressive muscle weakness. In the Infantile-Onset PD (IOPD), death generally occurs <1 year of age. There is no cure for IOPD. Mouse models of PD do not completely reproduce human IOPD severity. Our main objective was to generate the first IOPD rat model to assess an innovative muscle-directed adeno-associated viral (AAV) vector-mediated gene therapy. METHODS: PD rats were generated by CRISPR/Cas9 technology. The novel highly myotropic bioengineered capsid AAVMYO3 and an optimized muscle-specific promoter in conjunction with a transcriptional cis-regulatory element were used to achieve robust Gaa expression in the entire muscular system. Several metabolic, molecular, histopathological, and functional parameters were measured. RESULTS: PD rats showed early-onset widespread glycogen accumulation, hepato- and cardiomegaly, decreased body and tissue weight, severe impaired muscle function and decreased survival, closely resembling human IOPD. Treatment with AAVMYO3-Gaa vectors resulted in widespread expression of Gaa in muscle throughout the body, normalizing glycogen storage pathology, restoring muscle mass and strength, counteracting cardiomegaly and normalizing survival rate. CONCLUSIONS: This gene therapy holds great potential to treat glycogen metabolism alterations in IOPD. Moreover, the AAV-mediated approach may be exploited for other inherited muscle diseases, which also are limited by the inefficient widespread delivery of therapeutic transgenes throughout the muscular system.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Ratones , Ratas , Humanos , Animales , Enfermedad del Almacenamiento de Glucógeno Tipo II/genética , Enfermedad del Almacenamiento de Glucógeno Tipo II/terapia , Enfermedad del Almacenamiento de Glucógeno Tipo II/patología , Músculo Esquelético/metabolismo , Glucógeno/metabolismo , Terapia Genética/métodos , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/terapia
18.
JCI Insight ; 9(11)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753465

RESUMEN

Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that 2 distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a potentially novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice livers, dual AAV gene therapy combined with rapamycin reduced the effect of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and to support clinical translation.


Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos , Hígado , Sirolimus , Animales , Sirolimus/farmacología , Sirolimus/uso terapéutico , Dependovirus/genética , Terapia Genética/métodos , Ratones , Hígado/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Músculo Esquelético/metabolismo , Fenotipo , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Humanos , Masculino
19.
Arch Pediatr ; 30(8S1): 8S46-8S52, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38043983

RESUMEN

Gene therapy using adeno-associated viral (AAV) vectors is a promising therapeutic strategy for multiple inherited diseases. Following intravenous injection, AAV vectors carrying a copy of the missing gene or the genome-editing machinery reach their target cells and deliver the genetic material. Several clinical trials are currently ongoing and significant success has already been achieved with at least six AAV gene therapy products with market approval in Europe and the United States. Nonetheless, clinical trials and preclinical studies have uncovered several limitations of AAV gene transfer, which need to be addressed in order to improve the safety and enable the treatment of the largest patient population. Limitations include the occurrence of immune-mediated toxicities, the potential loss of correction in the long run, and the development of neutralizing antibodies against AAV vectors preventing re-administration. In this review, we summarize these limitations and discuss the potential technological developments to overcome them. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.


Asunto(s)
Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos , Niño , Dependovirus/genética , Terapia Genética , Anticuerpos Neutralizantes/genética
20.
Trends Biotechnol ; 41(6): 836-845, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36503641

RESUMEN

Adeno-associated virus (AAV)-derived viral vectors are a promising platform for the delivery of curative, life-changing therapies to a huge number of patients with monogenic disorders. There are currently over 250 clinical trials ongoing worldwide. However, for these therapies to benefit as many patients as possible, techniques must be developed to treat those with pre-existing immunity and to potentially allow re-administration of a dose in the future, should efficacy wane over time. This review discusses the current state and prospects of technologies to evade and overcome these immune responses and allow successful treatment of the greatest number of patients possible.


Asunto(s)
Anticuerpos Neutralizantes , Vectores Genéticos , Humanos , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Neutralizantes/genética , Terapia Genética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA