Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 8(8): e1002936, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22952455

RESUMEN

Degeneration of synaptic and axonal compartments of neurons is an early event contributing to the pathogenesis of many neurodegenerative diseases, but the underlying molecular mechanisms remain unclear. Here, we demonstrate the effectiveness of a novel "top-down" approach for identifying proteins and functional pathways regulating neurodegeneration in distal compartments of neurons. A series of comparative quantitative proteomic screens on synapse-enriched fractions isolated from the mouse brain following injury identified dynamic perturbations occurring within the proteome during both initiation and onset phases of degeneration. In silico analyses highlighted significant clustering of proteins contributing to functional pathways regulating synaptic transmission and neurite development. Molecular markers of degeneration were conserved in injury and disease, with comparable responses observed in synapse-enriched fractions isolated from mouse models of Huntington's disease (HD) and spinocerebellar ataxia type 5. An initial screen targeting thirteen degeneration-associated proteins using mutant Drosophila lines revealed six potential regulators of synaptic and axonal degeneration in vivo. Mutations in CALB2, ROCK2, DNAJC5/CSP, and HIBCH partially delayed injury-induced neurodegeneration. Conversely, mutations in DNAJC6 and ALDHA1 led to spontaneous degeneration of distal axons and synapses. A more detailed genetic analysis of DNAJC5/CSP mutants confirmed that loss of DNAJC5/CSP was neuroprotective, robustly delaying degeneration in axonal and synaptic compartments. Our study has identified conserved molecular responses occurring within synapse-enriched fractions of the mouse brain during the early stages of neurodegeneration, focused on functional networks modulating synaptic transmission and incorporating molecular chaperones, cytoskeletal modifiers, and calcium-binding proteins. We propose that the proteins and functional pathways identified in the current study represent attractive targets for developing therapeutics aimed at modulating synaptic and axonal stability and neurodegeneration in vivo.


Asunto(s)
Lesiones Encefálicas , Drosophila , Degeneración Nerviosa , Sinapsis , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Animales , Axones/metabolismo , Axones/patología , Axones/fisiología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Calbindina 2 , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Proteómica , Proteína G de Unión al Calcio S100/genética , Proteína G de Unión al Calcio S100/metabolismo , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo , Degeneración Walleriana/metabolismo , Degeneración Walleriana/patología , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
2.
ILAR J ; 54(3): 291-5, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24615442

RESUMEN

Neurite degeneration is a hallmark feature of nearly all neurodegenerative diseases, occurs after most brain trauma, and is thought to be the underlying cause of functional loss in patients. Understanding the genetic basis of neurite degeneration represents a major challenge in the neuroscience field. If it is possible to define key signaling pathways that promote neurite destruction, their blockade represents an exciting new potential therapeutic approach to suppressing neurological loss in patients. This review highlights recently developed models that can be used to study fundamental aspects of neuronal injury using the fruit fly Drosophila. The speed, precision, and powerful molecular-genetic tools available in the fruit fly make for an attractive system in which to dissect neuronal signaling after injury. Their use has led to the identification of some of the first molecules whose endogenous function includes promoting axonal degeneration after axotomy, and these signaling pathways appear functionally well conserved in mammals.


Asunto(s)
Modelos Animales de Enfermedad , Neuritas/patología , Enfermedades Neurodegenerativas/fisiopatología , Transducción de Señal/fisiología , Traumatismos del Sistema Nervioso/fisiopatología , Animales , Axotomía , Drosophila , Larva , Neuronas Receptoras Olfatorias/lesiones
3.
Curr Biol ; 22(7): 596-600, 2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22425157

RESUMEN

Wld(S) (slow Wallerian degeneration) is a remarkable protein that can suppress Wallerian degeneration of axons and synapses, but how it exerts this effect remains unclear. Here, using Drosophila and mouse models, we identify mitochondria as a key site of action for Wld(S) neuroprotective function. Targeting the NAD(+) biosynthetic enzyme Nmnat to mitochondria was sufficient to fully phenocopy Wld(S), and Wld(S) was specifically localized to mitochondria in synaptic preparations from mouse brain. Axotomy of live wild-type axons induced a dramatic spike in axoplasmic Ca(2+) and termination of mitochondrial movement-Wld(S) potently suppressed both of these events. Surprisingly, Wld(S) also promoted increased basal mitochondrial motility in axons before injury, and genetically suppressing mitochondrial motility in vivo dramatically reduced the protective effect of Wld(S). Intriguingly, purified mitochondria from Wld(S) mice exhibited enhanced Ca(2+) buffering capacity. We propose that the enhanced Ca(2+) buffering capacity of Wld(S+) mitochondria leads to increased mitochondrial motility, suppression of axotomy-induced Ca(2+) elevation in axons, and thereby suppression of Wallerian degeneration.


Asunto(s)
Axones/patología , Calcio/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Degeneración Walleriana/genética , Animales , Animales Modificados Genéticamente , Axones/enzimología , Axotomía , Western Blotting , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Drosophila melanogaster , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Reacción en Cadena de la Polimerasa , Degeneración Walleriana/enzimología , Degeneración Walleriana/patología
4.
Science ; 337(6093): 481-4, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22678360

RESUMEN

Axonal and synaptic degeneration is a hallmark of peripheral neuropathy, brain injury, and neurodegenerative disease. Axonal degeneration has been proposed to be mediated by an active autodestruction program, akin to apoptotic cell death; however, loss-of-function mutations capable of potently blocking axon self-destruction have not been described. Here, we show that loss of the Drosophila Toll receptor adaptor dSarm (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously suppresses Wallerian degeneration for weeks after axotomy. Severed mouse Sarm1 null axons exhibit remarkable long-term survival both in vivo and in vitro, indicating that Sarm1 prodegenerative signaling is conserved in mammals. Our results provide direct evidence that axons actively promote their own destruction after injury and identify dSarm/Sarm1 as a member of an ancient axon death signaling pathway.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/fisiología , Axones/fisiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Neuronas/fisiología , Degeneración Walleriana , Animales , Animales Modificados Genéticamente , Apoptosis , Proteínas del Dominio Armadillo/análisis , Axones/ultraestructura , Axotomía , Supervivencia Celular , Células Cultivadas , Proteínas del Citoesqueleto/análisis , Desnervación , Drosophila/embriología , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/análisis , Ratones , Mutación , Nervio Ciático/lesiones , Nervio Ciático/fisiología , Transducción de Señal , Ganglio Cervical Superior/citología , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA