Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(33): 12234-12241, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37560970

RESUMEN

Aerial LiDAR measurements at 7474 oil and gas production facilities in the Permian Basin yield a measured methane emission rate distribution extending to the detection sensitivity of the method, 2 kg/h at 90% probability of detection (POD). Emissions are found at 38.3% of facilities scanned, a significantly higher proportion than reported in lower-sensitivity campaigns. LiDAR measurements are analyzed in combination with measurements of the heavy tail portion of the distribution (>600 kg/h) obtained from an airborne solar infrared imaging spectrometry campaign by Carbon Mapper (CM). A joint distribution is found by fitting the aligned LiDAR and CM data. By comparing the aerial samples to the joint distribution, the practical detection sensitivity of the CM 2019 campaign is found to be 280 kg/h [256, 309] (95% confidence) at 50% POD for facility-sized emission sources. With respect to the joint model distribution and its confidence interval, the LiDAR campaign is found to have measured 103.6% [93.5, 114.2%] of the total emission rate predicted by the model for equipment-sized emission sources (∼2 m diameter) with emission rates above 3 kg/h, whereas the CM 2019 campaign is found to have measured 39.7% [34.6, 45.1%] of the same quantity for facility-sized sources (150 m diameter) above 10 kg/h. The analysis is repeated with data from CM 2020-21 campaigns with similar results. The combined distributions represent a more comprehensive view of the emission rate distribution in the survey area, revealing the significance of previously underreported emission sources at rates below the detection sensitivity of some emissions monitoring campaigns.


Asunto(s)
Contaminantes Atmosféricos , Metano , Metano/análisis , Contaminantes Atmosféricos/análisis , Gas Natural/análisis
2.
Opt Lett ; 36(7): 1152-4, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21479013

RESUMEN

The optical frequency sweep of an actively linearized, ultrabroadband, chirped laser source is characterized through optical heterodyne detection against a fiber-laser frequency comb. Frequency sweeps were measured over approximately 5 THz bandwidths from 1530 nm to 1570 nm. The dominant deviation from linearity resulted from the nonzero dispersion of the fiber delay used as a reference for the sweep linearization. Removing the low-order dispersion effects, the residual sweep nonlinearity was less than 60 kHz rms, corresponding to a constant chirp with less than 15 ppb deviation across the 5 THz sweep.

3.
Appl Opt ; 49(2): 213-9, 2010 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-20062508

RESUMEN

As the bandwidth and linearity of frequency modulated continuous wave chirp ladar increase, the resulting range resolution, precisions, and accuracy are improved correspondingly. An analysis of a very broadband (several THz) and linear (<1 ppm) chirped ladar system based on active chirp linearization is presented. Residual chirp nonlinearity and material dispersion are analyzed as to their effect on the dynamic range, precision, and accuracy of the system. Measurement precision and accuracy approaching the part per billion level is predicted.

4.
Opt Lett ; 34(23): 3692-4, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19953164

RESUMEN

We demonstrate precise linearization of ultrabroadband laser frequency chirps via a fiber-based self-heterodyne technique to enable extremely high-resolution, frequency-modulated cw laser-radar (LADAR) and a wide range of other metrology applications. Our frequency chirps cover bandwidths up to nearly 5 THz with frequency errors as low as 170 kHz, relative to linearity. We show that this performance enables 31-mum transform-limited LADAR range resolution (FWHM) and 86 nm range precisions over a 1.5 m range baseline. Much longer range baselines are possible but are limited by atmospheric turbulence and fiber dispersion.

5.
J Res Natl Inst Stand Technol ; 112(6): 289-96, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-27110472

RESUMEN

We perform optical frequency metrology of an iodine-stabilized He-Ne laser using a mode-locked Ti:sapphire laser frequency comb that is stabilized using quantum interference of photocurrents in a semiconductor. Using this technique, we demonstrate carrier-envelope offset frequency fluctuations of less than 5 mHz using a 1 s gate time. With the resulting stable frequency comb, we measure the optical frequency of the iodine transition [(127)I2 R(127) 11-5 i component] to be 473 612 214 712.96 ± 0.66 kHz, well within the uncertainty of the CIPM recommended value. The stability of the quantum interference technique is high enough such that it does not limit the measurements.

6.
Appl Opt ; 42(27): 5517-21, 2003 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-14526840

RESUMEN

We demonstrate stable operation of a diode-pumped cw Raman ring laser in diatomic hydrogen gas. Doppler-induced asymmetry between the the forward and the backward Raman gains leads to inherent unidirectional operation in the forward direction without intracavity optical elements. Use of the ring-cavity geometry dilutes the deleterious effects of thermal lensing and significantly reduces optical feedback to the pump laser.

7.
Opt Lett ; 27(14): 1226-8, 2002 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18026410

RESUMEN

A diode-pumped, far-off-resonance cw Raman laser in H(2) with rotational Stokes emission is reported for the first time to our knowledge. The Raman laser can produce single-wavelength emission at either 830 nm (rotational Stokes) or 1180 nm (vibrational Stokes) depending on the frequency tuning of the pump laser. The mirrors for the rotational cw Raman laser are easier to produce; the laser also exhibits a wider continuous tuning range and is less sensitive to thermal effects than the previously studied vibrational Raman laser [Opt. Lett. 26, 426 (2001) and references therein].

8.
Appl Opt ; 43(5): 1162-6, 2004 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-15008498

RESUMEN

We demonstrate a continuous-wave deuterium Raman laser that generates more than 160 mW of Stokes output power despite severe thermal effects. This output power represents nearly an order-of-magnitude increase over any previously reported continuous-wave Raman laser and is the first such system to our knowledge that uses deuterium gas as the Raman medium. The high output power is achieved through careful consideration of the electronic feedback design, frequency actuators, and pump-laser intensity noise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA