RESUMEN
Arctic ecosystems are changing dramatically with warmer and wetter conditions resulting in complex interactions between herbivores and their forage. We investigated how Svalbard reindeer (Rangifer tarandus platyrhynchus) modify their late winter diets in response to long-term trends and interannual variation in forage availability and accessibility. By reconstructing their diets and foraging niches over a 17-year period (1995-2012) using serum δ13 C and δ15 N values, we found strong support for a temporal increase in the proportions of graminoids in the diets with a concurrent decline in the contributions of mosses. This dietary shift corresponds with graminoid abundance increases in the region and was associated with increases in population density, warmer summer temperatures and more frequent rain-on-snow (ROS) in winter. In addition, the variance in isotopic niche positions, breadths, and overlaps also supported a temporal shift in the foraging niche and a dietary response to extreme ROS events. Our long-term study highlights the mechanisms by which winter and summer climate changes cascade through vegetation shifts and herbivore population dynamics to alter the foraging niche of Svalbard reindeer. Although it has been anticipated that climate changes in the Svalbard region of the Arctic would be detrimental to this unique ungulate, our study suggests that environmental change is in a phase where conditions are improving for this subspecies at the northernmost edge of the Rangifer distribution.
Asunto(s)
Reno , Animales , Reno/fisiología , Svalbard , Ecosistema , Especies Reactivas de Oxígeno , Estaciones del Año , Regiones Árticas , Dieta , Cambio ClimáticoRESUMEN
The cost of reproduction on demographic rates is often assumed to operate through changing body condition. Several studies have found that reproduction depresses body mass more if the current conditions are severe, such as high population densities or adverse weather, than under benign environmental conditions. However, few studies have investigated the association between the fitness components and body mass costs of reproduction. Using 25 years of individual-based capture-recapture data from Svalbard reindeer Rangifer tarandus platyrhynchus, we built a novel Bayesian state-space model that jointly estimated interannual change in mass, annual reproductive success and survival, while accounting for incomplete observations. The model allowed us to partition the differential effects of intrinsic and extrinsic factors on both non-reproductive mass change and the body mass cost of reproduction, and to quantify their consequences on demographic rates. Contrary to our expectation, the body mass cost of reproduction (mean = -5.8 kg) varied little between years (CV = 0.08), whereas the between-year variation in body mass changes, that were independent of the previous year's reproductive state, varied substantially (CV = 0.4) in relation to autumn temperature and the amount of rain-on-snow in winter. This body mass loss led to a cost of reproduction on the next reproduction, which was amplified by the same environmental covariates, from a 10% reduction in reproductive success in benign years, to a 50% reduction in harsh years. The reproductive mass loss also resulted in a small reduction in survival. Our results show how demographic costs of reproduction, driven by interannual fluctuations in individual body condition, result from the balance between body mass costs of reproduction and body mass changes that are independent of previous reproductive state. We illustrate how a strong context-dependent fitness cost of reproduction can occur, despite a relatively fixed body mass cost of reproduction. This suggests that female reindeer display a very conservative energy allocation strategy, either aborting their reproductive attempt at an early stage or weaning at a relatively constant cost. Such a strategy might be common in species living in a highly stochastic and food limited environment.
Asunto(s)
Herbivoria , Reno , Animales , Regiones Árticas , Teorema de Bayes , Femenino , Reproducción , Estaciones del AñoRESUMEN
Telomere shortening can result in cellular senescence and in increased level of genome instability, which are key events in numerous of cancer types. Despite this, few studies have focused on the effect of nanomaterial exposure on telomere length as a possible mechanism involved in nanomaterial-induced carcinogenesis. In this study, effects of exposure to multiwalled carbon nanotubes (MWCNT) on telomere length were investigated in mice exposed by intrapleural injection, as well as in human lung epithelial and mesothelial cell lines. In addition, cell cycle, apoptosis, and regulation of genes involved in DNA damage repair were assessed. Exposure to MWCNT led to severe fibrosis, infiltration of inflammatory cells in pleura, and mesothelial cell hyperplasia. These histological alterations were accompanied by deregulation of genes involved in fibrosis and immune cell recruitment, as well as a significant shortening of telomeres in the pleura and the lung. Assessment of key carcinogenic mechanisms in vitro confirmed that long-term exposure to the long MWCNT led to a prominent telomere shortening in epithelial cells, which coincided with G1-phase arrest and enhanced apoptosis. Altogether, our data show that telomere shortening resulting in cell cycle arrest and apoptosis may be an important mechanism in long MWCNT-induced inflammation and fibrosis.
Asunto(s)
Nanotubos de Carbono , Animales , Células Epiteliales/metabolismo , Fibrosis , Pulmón/patología , Ratones , Nanotubos de Carbono/toxicidad , Telómero/genéticaRESUMEN
Arctic ungulates are experiencing the most rapid climate warming on Earth. While concerns have been raised that more frequent icing events may cause die-offs, and earlier springs may generate a trophic mismatch in phenology, the effects of warming autumns have been largely neglected. We used 25 years of individual-based data from a growing population of wild Svalbard reindeer, to test how warmer autumns enhance population growth. Delayed plant senescence had no effect, but a six-week delay in snow-onset (the observed data range) was estimated to increase late winter body mass by 10%. Because average late winter body mass explains 90% of the variation in population growth rates, such a delay in winter-onset would enable a population growth of r = 0.20, sufficient to counteract all but the most extreme icing events. This study provides novel mechanistic insights into the consequences of climate change for Arctic herbivores, highlighting the positive impact of warming autumns on population viability, offsetting the impacts of harsher winters. Thus, the future for Arctic herbivores facing climate change may be brighter than the prevailing view.
RESUMEN
Persistent organic pollutants (POPs) are widespread in the environment and their bioaccumulation can lead to adverse health effects in many organisms. Previously, using zebrafish as a model vertebrate, we found larvae exposed to a mixture of 29 POPs based on average blood levels from the Scandinavian population showed hyperactivity, and identified perfluorooctanesulfonic acid (PFOS) as the driving agent for the behavioral changes. In order to identify possible mechanisms, we exposed zebrafish larvae from 6 to 96 h post fertilization to the same mixture of POPs in two concentrations or a single PFOS exposure (0.55 and 3.83 µM) and performed behavioral tests and transcriptomics analysis. Behavioral alterations of exposed zebrafish larvae included hyperactivity and confirmed previously reported results. Transcriptomics analysis showed upregulation of transcripts related to muscle contraction that is highly regulated by the availability of calcium in the sarcoplasmic reticulum. Ingenuity pathway analysis showed that one of the affected pathways in larvae exposed to the POP mixture and PFOS was calcium signaling via the activation of the ryanodine receptors (RyR). Functional analyses with RyR inhibitors and behavioral outcomes substantiate these findings. Additional pathways affected were related to lipid metabolism in larvae exposed to the lower concentration of PFOS. By using omics technology, we observed that the altered behavioral pattern in exposed zebrafish larvae may be controlled directly by mechanisms affecting muscle function rather than via mechanisms connected to neurotoxicity.
Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Contaminantes Químicos del Agua , Ácidos Alcanesulfónicos , Animales , Señalización del Calcio , Fluorocarburos/toxicidad , Humanos , Larva , Contaminantes Químicos del Agua/toxicidad , Pez CebraRESUMEN
An extended lifespan of spermatozoa following artificial insemination (AI) can make the timing of insemination less critical, as previously demonstrated with immobilized spermatozoa that are gradually released from an alginate gel. The purpose was to examine the in vivo dissolution of SpermVital (SV) alginate gel over time by endoscopy and secondly to assess spermatozoa quality after incubation of the gel. In vivo endoscopy showed SV gel in the uterus 3, 6, 20 and 24 hr after AI, demonstrating the potential release of spermatozoa to the uterus during this period. In utero ex vivo incubation of the semen demonstrated that high motility and viability of sperm cells was sustained following overnight incubation.
Asunto(s)
Alginatos , Inseminación Artificial/veterinaria , Espermatozoides/fisiología , Animales , Bovinos , Criopreservación/veterinaria , Endoscopía/veterinaria , Femenino , Inseminación Artificial/métodos , Masculino , Análisis de Semen , Preservación de Semen/métodos , Preservación de Semen/veterinaria , Motilidad Espermática , Espermatozoides/efectos de los fármacos , ÚteroRESUMEN
The costs of reproduction are important in shaping individual life histories, and hence population dynamics, but the mechanistic pathways of such costs are often unknown. Female reindeer have evolved antlers possibly due to interference competition on winter-feeding grounds. Here, we investigate if variation in antler size explains part of the cost of reproduction in late winter mass of female reindeer. We captured 440 individual Svalbard reindeer a total of 1426 times over 16 years and measured antler size and body mass in late winter, while presence of a 'calf-at-heel' was observed in summer. We found that reproductive females grew smaller antlers and weighed 4.3 kg less than non-reproductive females. Path analyses revealed that 14% of this cost of reproduction in body mass was caused by the reduced antler size. Our study is therefore consistent with the hypothesis that antlers in female Rangifer have evolved due to interference competition and provides evidence for antler growth as a cost of reproduction in females. Antler growth was constrained more by life history events than by variation in the environment, which contrasts markedly with studies on male antlers and horns, and hence increases our understanding of constraints on ornamentation and life history trade-offs.
Asunto(s)
Cuernos de Venado , Ciervos , Cuernos , Reno , Animales , Femenino , Masculino , Reproducción , SvalbardRESUMEN
Through the action of cortisol, stress can affect reproductive biology with behavioural and physiological alterations. Using mixed sex primary pituitary cultures from Atlantic cod (Gadus morhua), the present study aimed to investigate potential direct effects of basal and stress level cortisol on the pituitary in terms of cell viability and reproduction-related gene expression at different stages of sexual maturity. Stress level of cortisol stimulated cell viability in cells derived from sexually maturing and mature fish. In cells from spent fish, high cortisol levels did not affect cell viability in terms of metabolic activity, but did stimulate viability in terms of membrane integrity. Basal cortisol levels did not affect cell viability. Ethanol, used as solvent for cortisol, decreased cell viability at all maturity stages, but did generally not affect gene expression. Genes investigated were fshb, lhb and two Gnrh receptors expressed in cod gonadotropes (gnrhr1b and gnrhr2a). Cortisol had dual effects on fshb expression; stimulating expression in cells from mature fish at stress dose, while inhibiting expression in cells from spent fish at both doses. In contrast, cortisol had no direct effect on lhb expression. While gnrhr2a transcript levels largely increased following cortisol treatment, gnrhr1b expression decreased in cells from spent fish and was unaffected at other maturity stages. These findings demonstrate that cortisol can act directly and differentially at the pituitary level in Atlantic cod and that factors facilitating these actions are dose-dependently activated and vary with level of sexual maturity.
Asunto(s)
Gadus morhua/crecimiento & desarrollo , Gadus morhua/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hidrocortisona/farmacología , Hipófisis/citología , Reproducción/genética , Maduración Sexual/genética , Animales , Supervivencia Celular/efectos de los fármacos , Etanol , Gonadotropinas/genética , Gonadotropinas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Reproducción/efectos de los fármacos , Maduración Sexual/efectos de los fármacos , SolventesRESUMEN
Environmental variation can generate life-long similarities among individuals born in the same breeding event, so-called cohort effects. Studies of cohort effects have to account for the potentially confounding effects of current conditions (observation year) and age of individuals. However, estimation of such models is hampered by inherent collinearity, as age is the difference between observation year (period) and cohort year. The difficulties of separating linear trends in any of the three variables in Age-Period-Cohort (APC) models are the subject of ongoing debate in social sciences and medicine but have remained unnoticed in ecology. After reviewing the use of APC models, we investigate the consequences of model specification on the estimation of cohort effects, using both simulated data and empirical data from a long-term individual-based study of reindeer in Svalbard. We demonstrate that APC models are highly sensitive to the model's treatment of age, period and cohort, which may generate spurious temporal trends in cohort effects. Avoiding grouping ages and using environmental covariates believed to be drivers of temporal variation reduces the APC identification problem. Nonetheless, ecologists should use caution, given that the specification issues in APC models may have substantial impacts on estimated effect sizes and therefore conclusions.
Asunto(s)
Ecología , Efecto de Cohortes , Estudios de Cohortes , HumanosRESUMEN
Perfluoroalkyl acids (PFAAs) are persistent compounds used in many industrial as well as consumer products. Despite restrictions, these compounds are found at measurable concentrations in samples of human and animal origin. In the present study we examined whether the effects on cell viability of two sulfonated and four carboxylated PFAAs in cultures of cerebellar granule neurons (CGNs), could be associated with deleterious activation of the N-methyl-d-aspartate receptor (NMDA-R). PFAA-induced effects on viability in rat CGNs and unstimulated PC12 cells were examined using the MTT assay. Cells from the PC12 rat pheochromocytoma cell line lack the expression of functional NMDA-Rs and were used to verify lower toxicity of perfluorooctanesulfonic acid (PFOS) in cells not expressing NMDA-Rs. Protective effects of NMDA-R antagonists, and extracellular as well as intracellular Ca2+ chelators were investigated. Cytosolic Ca2+ ([Ca2+]i) was measured using Fura-2. In rat CGNs the effects of the NMDA-R antagonists MK-801, memantine and CPP indicated involvement of the NMDA-R in the decreased viability induced by PFOS and perfluorohexanesulfonic acid (PFHxS). No effects were associated with the four carboxylated PFAAs studied. Further, EGTA and CPP protected against PFOS-induced decreases in cell viability, whereas no protection was afforded by BAPTA-AM. [Ca2+]i significantly increased after exposure to PFOS, and this increase was completely blocked by MK-801. In PC12 cells a higher concentration of PFOS was required to induce equivalent levels of toxicity as compared to in rat CGNs. PFOS-induced toxicity in PC12 cells was not affected by CPP. In conclusion, PFOS at the tested concentrations induces excitotoxicity in rat CGNs, which likely involves influx of extracellular Ca2+ via the NMDA-R. This effect can be blocked by specific NMDA-R antagonists.
Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Calcio/metabolismo , Cerebelo/citología , Fluorocarburos/toxicidad , Neuronas/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Caprilatos/toxicidad , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Células PC12 , Ratas , Receptores Ionotrópicos de GlutamatoRESUMEN
Persistent organic pollutants (POPs) are widespread throughout the environment and some are suspected to induce reproductive toxicity. As animals and humans are exposed to complex mixtures of POPs, it is reasonable to assess how such mixtures could interact with the reproductive system. Our aim is to investigate how maternal exposure to a mixture of 29 different persistent organic pollutants, formulated to mimic the relative POP levels in the food basket of the Scandinavian population, could alter reproductive endpoints. Female mice were exposed via feed from weaning, during pregnancy and lactation in 3 exposure groups (control (C), low (L) and high (H)). Testicular morphometric endpoints, epididymal sperm concentration and sperm DNA integrity were assessed in adult male offspring. We found that the number of tubules, proportion of tubule compartments and epididymal sperm concentration significantly decreased in both POP exposed groups. Epididymal sperm from both POP exposed groups showed increased DNA fragmentation. It is concluded that maternal exposure to a defined POP mixture relevant to human exposure can affect testicular development, sperm production and sperm chromatin integrity.
Asunto(s)
Fragmentación del ADN , Contaminantes Ambientales/toxicidad , Epidídimo/efectos de los fármacos , Exposición Materna/efectos adversos , Compuestos Orgánicos/toxicidad , Efectos Tardíos de la Exposición Prenatal , Reproducción/efectos de los fármacos , Recuento de Espermatozoides , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Animales , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Epidídimo/metabolismo , Epidídimo/patología , Femenino , Lactancia , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Embarazo , Medición de Riesgo , Factores Sexuales , Espermatozoides/metabolismo , Espermatozoides/patología , Testículo/metabolismo , Testículo/patología , DesteteRESUMEN
The cumulative effects of climate warming on herbivore vital rates and population dynamics are hard to predict, given that the expected effects differ between seasons. In the Arctic, warmer summers enhance plant growth which should lead to heavier and more fertile individuals in the autumn. Conversely, warm spells in winter with rainfall (rain-on-snow) can cause 'icing', restricting access to forage, resulting in starvation, lower survival and fecundity. As body condition is a 'barometer' of energy demands relative to energy intake, we explored the causes and consequences of variation in body mass of wild female Svalbard reindeer (Rangifer tarandus platyrhynchus) from 1994 to 2015, a period of marked climate warming. Late winter (April) body mass explained 88% of the between-year variation in population growth rate, because it strongly influenced reproductive loss, and hence subsequent fecundity (92%), as well as survival (94%) and recruitment (93%). Autumn (October) body mass affected ovulation rates but did not affect fecundity. April body mass showed no long-term trend (coefficient of variation, CV = 8.8%) and was higher following warm autumn (October) weather, reflecting delays in winter onset, but most strongly, and negatively, related to 'rain-on-snow' events. October body mass (CV = 2.5%) increased over the study due to higher plant productivity in the increasingly warm summers. Density-dependent mass change suggested competition for resources in both winter and summer but was less pronounced in recent years, despite an increasing population size. While continued climate warming is expected to increase the carrying capacity of the high Arctic tundra, it is also likely to cause more frequent icing events. Our analyses suggest that these contrasting effects may cause larger seasonal fluctuations in body mass and vital rates. Overall our findings provide an important 'missing' mechanistic link in the current understanding of the population biology of a keystone species in a rapidly warming Arctic.
Asunto(s)
Herbivoria , Reno , Animales , Regiones Árticas , Índice de Masa Corporal , Femenino , Dinámica Poblacional , Estaciones del Año , SvalbardRESUMEN
Depending on the stage of gonad maturation, as well as other factors, gonadal steroids can exert either a positive or negative feedback at the brain and pituitary level. While this has been demonstrated in many teleost species, little is known about the nature of steroid feedback in Gadiform fish. Using an optimized in vitro model system of the Atlantic cod pituitary, the present study investigated the potential effects of two physiologically relevant doses of estradiol, testosterone (TS) or dihydrotestosterone (DHTS) on cell viability and gene expression of gonadotropin subunits (fshb/lhb) and two suggested reproduction-relevant gonadotropin-releasing hormone receptors (gnrhr1b/gnrhr2a) during three stages of sexual maturity. In general, all steroids stimulated cell viability in terms of metabolic activity and membrane integrity. Furthermore, all steroids affected fshb expression, with the effect depending on both the specific steroid, dose and maturity status. Conversely, only DHTS exposure affected lhb levels, and this occurred only during the spawning season. Using single-cell qPCR, co-transcription of gnrhr1b and gnrhr2a was confirmed to both fshb- and lhb- expressing gonadotropes, with gnrhr2a being the most prominently expressed isoform. While steroid exposure had no effect on gnrhr1b expression, all steroids affected gnrhr2a transcript levels in at least one maturity stage. These and previous results from our group point to Gnrhr2a as the main modulator of gonadotropin regulation in cod and that regulation of its gene expression level might function as a direct mechanism for steroid feedback at the pituitary level.
Asunto(s)
Hormona Folículo Estimulante de Subunidad beta/genética , Gadus morhua/genética , Hormonas Esteroides Gonadales/farmacología , Hormona Luteinizante de Subunidad beta/genética , Receptores LHRH/genética , Animales , Células Cultivadas , Femenino , Hormona Folículo Estimulante de Subunidad beta/metabolismo , Gadus morhua/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hormona Luteinizante de Subunidad beta/metabolismo , Masculino , Hipófisis/citología , Hipófisis/metabolismo , Receptores LHRH/metabolismoRESUMEN
Infections caused by the facultative intracellular bacterial pathogen Piscirickettsia salmonis remains an unsolved problem for the aquaculture as no efficient treatments have been developed. As a result, substantial amounts of antibiotic have been used to limit salmonid rickettsial septicemia (SRS) disease outbreaks. The antibiotic usage has not reduced the occurrence, but lead to an increase in resistant strains, underlining the need for new treatment strategies. P. salmonis produce membrane vesicles (MVs); small spherical structures know to contain a variety of bacterial components, including proteins, lipopolysaccharides (LPS), DNA and RNA. MVs mimics' in many aspects their mother cell, and has been reported as alternative vaccine candidates. Here, MVs from P. salmonis was isolated and evaluated as a vaccine candidate against SRS in an adult zebrafish infection model. When zebrafish was immunized with MVs they were protected from subsequent challenge with a lethal dose of P. salmonis. Histological analysis showed a reduced bacterial load upon challenge in the MV immunized group, and the mRNA expression levels of several immune related genes altered, including mpeg1.1, tnfα, il1b, il10 and il6. The MVs induced the secretion of IgM upon immunization, indicating an immunogenic effect of the vesicles. Taken together, the data demonstrate a vaccine potential of MVs against P. salmonis.
Asunto(s)
Vacunas Bacterianas/inmunología , Vesículas Citoplasmáticas/metabolismo , Enfermedades de los Peces/prevención & control , Piscirickettsia/inmunología , Infecciones por Piscirickettsiaceae/veterinaria , Sepsis/veterinaria , Pez Cebra , Animales , Carga Bacteriana , Vesículas Citoplasmáticas/inmunología , Femenino , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Expresión Génica , Inmunidad Innata , Masculino , Modelos Animales , Piscirickettsia/metabolismo , Infecciones por Piscirickettsiaceae/inmunología , Infecciones por Piscirickettsiaceae/prevención & control , ARN Mensajero/genética , Sepsis/inmunología , Sepsis/prevención & controlRESUMEN
Amongst the substances listed as persistent organic pollutants (POP) under the Stockholm Convention on Persistent Organic Pollutants (SCPOP) are chlorinated, brominated, and fluorinated compounds. Most experimental studies investigating effects of POP employ single compounds. Studies focusing on effects of POP mixtures are limited, and often conducted using extracts from collected specimens. Confounding effects of unmeasured substances in such extracts may bias the estimates of presumed causal relationships being examined. The aim of this investigation was to design a model of an environmentally relevant mixture of POP for use in experimental studies, containing 29 different chlorinated, brominated, and perfluorinated compounds. POP listed under the SCPOP and reported to occur at the highest levels in Scandinavian food, blood, or breast milk prior to 2012 were selected, and two different mixtures representing varying exposure scenarios constructed. The in vivo mixture contained POP concentrations based upon human estimated daily intakes (EDIs), whereas the in vitro mixture was based upon levels in human blood. In addition to total in vitro mixture, 6 submixtures containing the same concentration of chlorinated + brominated, chlorinated + perfluorinated, brominated + perfluorinated, or chlorinated, brominated or perfluorinated compounds only were constructed. Using submixtures enables investigating the effect of adding or removing one or more chemical groups. Concentrations of compounds included in feed and in vitro mixtures were verified by chemical analysis. It is suggested that this method may be utilized to construct realistic mixtures of environmental contaminants for toxicity studies based upon the relative levels of POP to which individuals are exposed.
Asunto(s)
Contaminantes Ambientales/toxicidad , Compuestos Orgánicos/toxicidad , Animales , Modelos Animales de Enfermedad , Contaminantes Ambientales/sangre , Contaminación Ambiental/efectos adversos , Fluorocarburos/sangre , Fluorocarburos/toxicidad , Análisis de los Alimentos , Contaminación de Alimentos/análisis , Humanos , Hidrocarburos Bromados/sangre , Hidrocarburos Bromados/toxicidad , Hidrocarburos Clorados/sangre , Hidrocarburos Clorados/toxicidad , Compuestos Orgánicos/sangre , Bifenilos Policlorados/sangre , Bifenilos Policlorados/toxicidadRESUMEN
Persistent organic pollutants (POPs) are widespread in the environment and some may be neurotoxic. As we are exposed to complex mixtures of POPs, we aimed to investigate how a POP mixture based on Scandinavian human blood data affects behaviour and neurodevelopment during early life in zebrafish. Embryos/larvae were exposed to a series of sub-lethal doses and behaviour was examined at 96 h post fertilization (hpf). In order to determine the sensitivity window to the POP mixture, exposure models of 6 to 48 and 48 to 96 hpf were used. The expression of genes related to neurological development was also assessed. Results indicate that the POP mixture increases the swimming speed of larval zebrafish following exposure between 48 to 96 hpf. This behavioural effect was associated with the perfluorinated compounds, and more specifically with perfluorooctanesulfonic acid (PFOS). The expression of genes related to the stress response, GABAergic, dopaminergic, histaminergic, serotoninergic, cholinergic systems and neuronal maintenance, were altered. However, there was little overlap in those genes that were significantly altered by the POP mixture and PFOS. Our findings show that the POP mixture and PFOS can have a similar effect on behaviour, yet alter the expression of genes relevant to neurological development differently.
Asunto(s)
Ácidos Alcanesulfónicos/efectos adversos , Conducta Animal/efectos de los fármacos , Fluorocarburos/efectos adversos , Regulación de la Expresión Génica/efectos de los fármacos , Compuestos Orgánicos/efectos adversos , Contaminantes Químicos del Agua/efectos adversos , Pez Cebra , Animales , Análisis por Conglomerados , Fertilización , Perfilación de la Expresión Génica , Larva/efectos de los fármacos , Natación , Transcriptoma , Pez Cebra/genéticaRESUMEN
The internal predictive adaptive response (internal PAR) hypothesis predicts that individuals born in poor conditions should start to reproduce earlier if they are likely to have reduced performance in later life. However, whether this is the case remains unexplored in wild populations. Here, we use longitudinal data from a long-term study of Svalbard reindeer to examine age-related changes in adult female life-history responses to environmental conditions experienced in utero as indexed by rain-on-snow (ROSutero). We show that females experiencing high ROSutero had reduced reproductive success only from 7 years of age, independent of early reproduction. These individuals were able to maintain the same annual reproductive success between 2 and 6 years as phenotypically superior conspecifics that experienced low ROSutero Young females born after high ROSutero engage in reproductive events at lower body mass (about 2.5 kg less) than those born after low ROSutero The mean fitness of females that experienced poor environmental conditions in early life was comparable with that of females exposed to good environmental conditions in early life. These results are consistent with the idea of internal PAR and suggest that the life-history responses to early-life conditions can buffer the delayed effects of weather on population dynamics.
Asunto(s)
Reno/fisiología , Reproducción , Tiempo (Meteorología) , Animales , Femenino , Dinámica Poblacional , Embarazo , SvalbardRESUMEN
Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential. Most studies focus on single compound effects, however as humans are exposed to several POPs simultaneously, investigating exposure effects of real life POP mixtures on human health is necessary. A defined mixture of POPs was used, where the compound concentration reflected its contribution to the levels seen in Scandinavian human serum (total mix). Several sub mixtures representing different classes of POPs were also constructed. The perfluorinated (PFC) mixture contained six perfluorinated compounds, brominated (Br) mixture contained seven brominated compounds, chlorinated (Cl) mixture contained polychlorinated biphenyls and also p,p'-dichlorodiphenyldichloroethylene, hexachlorobenzene, three chlordanes, three hexachlorocyclohexanes and dieldrin. Human hepatocarcinoma (HepG2) cells were used for 2h and 48h exposures to the seven mixtures and analysis on a CellInsight™ NXT High Content Screening platform. Multiple cytotoxic endpoints were investigated: cell number, nuclear intensity and area, mitochondrial mass and membrane potential (MMP) and reactive oxygen species (ROS). Both the Br and Cl mixtures induced ROS production but did not lead to apoptosis. The PFC mixture induced ROS production and likely induced cell apoptosis accompanied by the dissipation of MMP. Synergistic effects were evident for ROS induction when cells were exposed to the PFC+Br mixture in comparison to the effects of the individual mixtures. No significant effects were detected in the Br+Cl, PFC+Cl or total mixtures, which contain the same concentrations of chlorinated compounds as the Cl mixture plus additional compounds; highlighting the need for further exploration of POP mixtures in risk assessment.
Asunto(s)
Contaminantes Ambientales/toxicidad , Compuestos Orgánicos/toxicidad , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Mezclas Complejas/toxicidad , Fluorocarburos/toxicidad , Células Hep G2 , Ensayos Analíticos de Alto Rendimiento , Humanos , Hidrocarburos Bromados/toxicidad , Hidrocarburos Clorados/toxicidad , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Apoptosis is an integral element of development that may also be initiated by environmental contaminants. The aim of the present study was to assess potential changes in the regulation of apoptotic genes in zebrafish embryos following parental exposure to two natural mixtures of persistent organic pollutants (POP). The mixture from Lake Mjøsa contained exceptionally high concentrations of polybrominated diphenyl ethers (PBDE), as well as relatively high levels of polychlorinated biphenyls (PCB) and dichlorodiphenyltrichloroethane (DDT). The mixture from Lake Losna contained background concentrations of POP. Genes involved in the apoptotic machinery were screened for their expression profile at four time points during embryonic development. Thirteen and 15 genes involved in apoptosis were found to be significantly upregulated in the high-exposure and background exposure groups, respectively, compared with controls. Modulation of apoptotic genes was restricted only to the first time point, which corresponds with the blastula stage. Although there were substantial differences in POP concentrations between mixtures, genes underlying the apoptosis process showed almost similar responses to the two mixtures. In both exposure groups the main executors of apoptosis p53, casp 2, casp 6, cassp 8, and BAX displayed upregulation compared to controls, suggesting that these POP induce apoptosis via a p53-dependent mechanism. Upregulation of genes that play a critical role in apoptosis suggests that disturbance of normal apoptotic signaling during gametogenesis and embryogenesis may be one of the central mechanisms involved in adverse reproductive effects produced by POP in zebrafish.
Asunto(s)
Apoptosis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Apoptosis/genética , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Pez Cebra/embriologíaRESUMEN
A series of studies have assessed the occurrence, levels, and potential adverse effects of persistent organic pollutants (POP) in fish from Lake Mjøsa. In this lake, high levels of various POP were detected in biota. Fish from the nearby Lake Losna contain background levels of POP and served as reference (controls) in these studies. Significantly higher prevalence of mycobacteriosis and pathological changes were documented in burbot (Lota lota) from Mjøsa compared to burbot from Losna. Further, transcriptional profiling identified changes in gene expression in burbot from Mjøsa compared to burbot from Losna associated with drug metabolism enzymes and oxidative stress. POP extracted from burbot liver oil from the two lakes was used to expose zebrafish (Danio rerio) during two consecutive generations. During both generations, POP mixtures from both lakes increased the rate of mortality, induced earlier onset of puberty, and skewed sex ratio toward males. However, opposite effects on weight gain were found in exposure groups compared to controls during the two generations. Exposure to POP from both lakes was associated with suppression of ovarian follicle development. Analyses of genome-wide transcription profiling identified functional networks of genes associated with weight homeostasis, steroid hormone functions, and insulin signaling. In human cell studies using adrenocortical H295R and primary porcine theca and granulosa cells, exposure to lake extracts from both populations modulated steroid hormone production with significant difference from controls. The results suggest that POP from both lakes may possess the potential to induce endocrine disruption and may adversely affect health in wild fish.