Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Genet ; 10(5): e1004349, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24785692

RESUMEN

As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II), α-mannosidase-IIb (α-Man-IIb), a ß-N-acetylglucosaminidase called fused lobes (Fdl), and hexosaminidase 1 (Hexo1). We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights into the functions of glycosyl hydrolases in the secretory pathway.


Asunto(s)
Drosophila melanogaster/metabolismo , Hidrolasas/genética , Mutación , Polisacáridos/metabolismo , Rodopsina/biosíntesis , Animales , Western Blotting , Drosophila melanogaster/genética , Glicosilación
2.
J Biol Chem ; 289(47): 32392-409, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25261468

RESUMEN

SNARE proteins play indispensable roles in membrane fusion events in many cellular processes, including synaptic transmission and protein trafficking. Here, we characterize the Golgi SNARE protein, Gos28, and its role in rhodopsin (Rh1) transport through Drosophila photoreceptors. Mutations in gos28 lead to defective Rh1 trafficking and retinal degeneration. We have pinpointed a role for Gos28 in the intra-Golgi transport of Rh1, downstream from α-mannosidase-II in the medial- Golgi. We have confirmed the necessity of key residues in Gos28's SNARE motif and demonstrate that its transmembrane domain is not required for vesicle fusion, consistent with Gos28 functioning as a t-SNARE for Rh1 transport. Finally, we show that human Gos28 rescues both the Rh1 trafficking defects and retinal degeneration in Drosophila gos28 mutants, demonstrating the functional conservation of these proteins. Our results identify Gos28 as an essential SNARE protein in Drosophila photoreceptors and provide mechanistic insights into the role of SNAREs in neurodegenerative disease.


Asunto(s)
Proteínas de Drosophila/metabolismo , Aparato de Golgi/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Qb-SNARE/metabolismo , Rodopsina/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Transporte Biológico/genética , Western Blotting , Supervivencia Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Microscopía Confocal , Microscopía Electrónica , Datos de Secuencia Molecular , Mutación , Proteínas Qb-SNARE/genética , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Homología de Secuencia de Aminoácido
3.
Vis Neurosci ; 29(3): 143-56, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22575127

RESUMEN

Glycosylphosphatidylinositol (GPI) anchors are critical for the membrane attachment of a wide variety of essential signaling and cell adhesion proteins. The GPI anchor is a complex glycolipid structure that utilizes glycosylphosphatidylinositol-mannosyltransferases (GPI-MTs) for the addition of three core mannose residues during its biosynthesis. Here, we demonstrate that Drosophila GPI-MT2 is required for the GPI-mediated membrane attachment of several GPI-anchored proteins, including the photoreceptor-specific cell adhesion molecule, chaoptin. Mutations in gpi-mt2 lead to defects in chaoptin trafficking to the plasma membrane in Drosophila photoreceptor cells. In gpi-mt2 mutants, loss of sufficient chaoptin in the membrane leads to microvillar instability, photoreceptor cell pathology, and retinal degeneration. Finally, using site-directed mutagenesis, we have identified key amino acids that are essential for GPI-MT2 function and cell viability in Drosophila. Our findings on GPI-MT2 provide a mechanistic link between GPI anchor biosynthesis and protein trafficking in Drosophila and shed light on a novel mechanism for inherited retinal degeneration.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Manosiltransferasas/metabolismo , Glicoproteínas de Membrana/biosíntesis , Receptores de Superficie Celular/biosíntesis , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Western Blotting , Membrana Celular/metabolismo , Supervivencia Celular/fisiología , ADN/genética , Proteínas de Drosophila/genética , Glicosilfosfatidilinositoles/genética , Humanos , Inmunohistoquímica , Manosiltransferasas/genética , Microscopía Electrónica , Microvellosidades/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Opsinas/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Conformación Proteica , Especificidad de la Especie
4.
J Biol Chem ; 285(24): 18928-38, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20400506

RESUMEN

Calnexin is a molecular chaperone and a component of the quality control of the secretory pathway. We have generated calnexin gene-deficient mice (cnx(-/-)) and showed that calnexin deficiency leads to myelinopathy. Calnexin-deficient mice were viable with no discernible effects on other systems, including immune function, and instead they demonstrated dysmyelination as documented by reduced conductive velocity of nerve fibers and electron microscopy analysis of sciatic nerve and spinal cord. Myelin of the peripheral and central nervous systems of cnx(-/-) mice was disorganized and decompacted. There were no abnormalities in neuronal growth, no loss of neuronal fibers, and no change in fictive locomotor pattern in the absence of calnexin. This work reveals a previously unrecognized and important function of calnexin in myelination and provides new insights into the mechanisms responsible for myelin diseases.


Asunto(s)
Calnexina/genética , Calnexina/fisiología , Enfermedades Desmielinizantes/metabolismo , Vaina de Mielina/metabolismo , Animales , Animales Recién Nacidos , Calnexina/metabolismo , Membrana Celular/metabolismo , Electrofisiología/métodos , Retículo Endoplásmico/metabolismo , Femenino , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pliegue de Proteína , Nervio Ciático/metabolismo , Nervio Ciático/ultraestructura , Médula Espinal/metabolismo , Médula Espinal/ultraestructura
5.
Neuron ; 49(2): 229-41, 2006 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-16423697

RESUMEN

In sensory neurons, successful maturation of signaling molecules and regulation of Ca2+ are essential for cell function and survival. Here, we demonstrate a multifunctional role for calnexin as both a molecular chaperone uniquely required for rhodopsin maturation and a regulator of Ca2+ that enters photoreceptor cells during light stimulation. Mutations in Drosophila calnexin lead to severe defects in rhodopsin (Rh1) expression, whereas other photoreceptor cell proteins are expressed normally. Mutations in calnexin also impair the ability of photoreceptor cells to control cytosolic Ca2+ levels following activation of the light-sensitive TRP channels. Finally, mutations in calnexin lead to retinal degeneration that is enhanced by light, suggesting that calnexin's function as a Ca2+ buffer is important for photoreceptor cell survival. Our results illustrate a critical role for calnexin in Rh1 maturation and Ca2+ regulation and provide genetic evidence that defects in calnexin lead to retinal degeneration.


Asunto(s)
Señalización del Calcio/fisiología , Calnexina/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Rodopsina/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Northern Blotting , Calcio/metabolismo , Supervivencia Celular/fisiología , Cromatografía de Afinidad , ADN/biosíntesis , ADN/genética , Drosophila , Electroforesis en Gel de Poliacrilamida , Inmunohistoquímica , Luz , Microscopía Electrónica , Chaperonas Moleculares , Datos de Secuencia Molecular , Mutación/genética , Mutación/fisiología , Técnicas de Placa-Clamp , Células Fotorreceptoras de Invertebrados/citología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Rodopsina/biosíntesis , Rodopsina/genética
6.
Neuron ; 72(4): 602-15, 2011 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-22099462

RESUMEN

TRP channels have emerged as key biological sensors in vision, taste, olfaction, hearing, and touch. Despite their importance, virtually nothing is known about the folding and transport of TRP channels during biosynthesis. Here, we identify XPORT (exit protein of rhodopsin and TRP) as a critical chaperone for TRP and its G protein-coupled receptor (GPCR), rhodopsin (Rh1). XPORT is a resident ER and secretory pathway protein that interacts with TRP and Rh1, as well as with Hsp27 and Hsp90. XPORT promotes the targeting of TRP to the membrane in Drosophila S2 cells, a finding that provides a critical first step toward solving a longstanding problem in the successful heterologous expression of TRP. Mutations in xport result in defective transport of TRP and Rh1, leading to retinal degeneration. Our results identify XPORT as a molecular chaperone and provide a mechanistic link between TRP channels and their GPCRs during biosynthesis and transport.


Asunto(s)
Proteínas de Drosophila/metabolismo , Rodopsina/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Línea Celular , Drosophila , Chaperonas Moleculares/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Transporte de Proteínas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA