Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042806

RESUMEN

Globally, 15,521 animal species are listed as threatened by the International Union for the Conservation of Nature, and of these less than 3% have genomic resources that can inform conservation management. To combat this, global genome initiatives are developing genomic resources, yet production of a reference genome alone does not conserve a species. The reference genome allows us to develop a suite of tools to understand both genome-wide and functional diversity within and between species. Conservation practitioners can use these tools to inform their decision-making. But, at present there is an implementation gap between the release of genome information and the use of genomic data in applied conservation by conservation practitioners. In May 2020, we launched the Threatened Species Initiative and brought a consortium of genome biologists, population biologists, bioinformaticians, population geneticists, and ecologists together with conservation agencies across Australia, including government, zoos, and nongovernment organizations. Our objective is to create a foundation of genomic data to advance our understanding of key Australian threatened species, and ultimately empower conservation practitioners to access and apply genomic data to their decision-making processes through a web-based portal. Currently, we are developing genomic resources for 61 threatened species from a range of taxa, across Australia, with more than 130 collaborators from government, academia, and conservation organizations. Developed in direct consultation with government threatened-species managers and other conservation practitioners, herein we present our framework for meeting their needs and our systematic approach to integrating genomics into threatened species recovery.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Especies en Peligro de Extinción/legislación & jurisprudencia , Genómica/normas , Animales , Recolección de Datos , Especies en Peligro de Extinción/tendencias , Genoma , Genómica/legislación & jurisprudencia , Genómica/métodos , Gobierno
2.
Am J Bot ; 110(11): e16245, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37747108

RESUMEN

PREMISE: Species delimitation is an integral part of evolution and ecology and is vital in conservation science. However, in some groups, species delimitation is difficult, especially where ancestral relationships inferred from morphological or genetic characters are discordant, possibly due to a complicated demographic history (e.g., recent divergences between lineages). Modern genetic techniques can take into account complex histories to distinguish species at a reasonable cost and are increasingly used in numerous applications. We focus on the scribbly gums, a group of up to five closely related and morphologically similar "species" within the eucalypts. METHODS: Multiple populations of each recognized scribbly gum species were sampled over a wide region across climates, and genomewide scans were used to resolve species boundaries. RESULTS: None of the taxa were completely divergent, and there were two genetically distinct entities: the inland distributed Eucalyptus rossii and a coastal conglomerate consisting of four species forming three discernible, but highly admixed groups. Divergence among taxa was likely driven by temporal vicariant processes resulting in partial separation across biogeographic barriers. High interspecific gene flow indicated separated taxa reconnected at different points in time, blurring species boundaries. CONCLUSIONS: Our results highlight the need for genetic screening when dealing with closely related taxonomic entities, particularly those with modest morphological differences. We show that high-throughput sequencing can be effective at identifying species groupings and processes driving divergence, even in the most taxonomically complex groups, and be used as a standard practice for disentangling species complexes.


Asunto(s)
Eucalyptus , Filogenia , Genómica , Ecología
3.
Ann Bot ; 130(4): 491-508, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-35802354

RESUMEN

BACKGROUND AND AIMS: Knowledge of the evolutionary processes responsible for the distribution of threatened and highly localized species is important for their conservation. Population genomics can provide insights into evolutionary processes to inform management practices, including the translocation of threatened plant species. In this study, we focus on a critically endangered eucalypt, Eucalyptus sp. Cattai, which is restricted to a 40-km2 area of Sydney, Australia, and is threatened by increased urbanization. Eucalyptus sp. Cattai has yet to be formally described in part due to its suspected hybrid origin. Here, we examined evolutionary processes and species boundaries in E. sp. Cattai to determine whether translocation was warranted. METHODS: We used genome-wide scans to investigate the evolutionary relationships of E. sp. Cattai with related species, and to assess levels of genetic health and admixture. Morphological trait and genomic data were obtained from seedlings of E. sp. Cattai propagated in a common garden to assess their genetic provenance and hybrid status. KEY RESULTS: All analyses revealed that E. sp. Cattai was strongly supported as a distinct species. Genetic diversity varied across populations, and clonality was unexpectedly high. Interspecific hybridization was detected, and was more prevalent in seedlings compared to in situ adult plants, indicating that post-zygotic barriers may restrict the establishment of hybrids. CONCLUSIONS: Multiple evolutionary processes (e.g. hybridization and clonality) can operate within one rare and restricted species. Insights regarding evolutionary processes from our study were used to assist with the translocation of genetically 'pure' and healthy ex situ seedlings to nearby suitable habitat. Our findings demonstrate that it is vital to provide an understanding of evolutionary relationships and processes with an examination of population genomics in the design and implementation of an effective translocation strategy.


Asunto(s)
Especies en Peligro de Extinción , Eucalyptus , Animales , Evolución Biológica , Ecosistema , Eucalyptus/genética , Hibridación Genética
4.
Am J Bot ; 109(10): 1652-1671, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36164832

RESUMEN

PREMISE: Understanding evolutionary history and classifying discrete units of organisms remain overwhelming tasks, and lags in this workload concomitantly impede an accurate documentation of biodiversity and conservation management. Rapid advances and improved accessibility of sensitive high-throughput sequencing tools are fortunately quickening the resolution of morphological complexes and   thereby improving the estimation of species diversity. The recently described and critically endangered Banksia vincentia is morphologically similar to the hairpin banksia complex (B. spinulosa s.l.), a group of eastern Australian flowering shrubs whose continuum of morphological diversity has been responsible for taxonomic controversy and possibly questionable conservation initiatives. METHODS: To assist conservation while testing the current taxonomy of this group, we used high-throughput sequencing to infer a population-scale evolutionary scenario for a sample set that is comprehensive in its representation of morphological diversity and a 2500-km distribution. RESULTS: Banksia spinulosa s.l. represents two clades, each with an internal genetic structure shaped through historical separation by biogeographic barriers. This structure conflicts with the existing taxonomy for the group. Corroboration between phylogeny and population statistics aligns with the hypothesis that B. collina, B. neoanglica, and B. vincentia should not be classified as species. CONCLUSIONS: The pattern here supports how morphological diversity can be indicative of a locally expressed suite of traits rather than relationship. Oversplitting in the hairpin banksias is atypical since genomic analyses often reveal that species diversity is underestimated. However, we show that erring on overestimation can yield negative consequences, such as the disproportionate prioritization of a geographically anomalous population.


Asunto(s)
Proteaceae , Australia , Filogenia , Proteaceae/genética , Evolución Biológica , Biodiversidad
5.
Heredity (Edinb) ; 123(4): 532-548, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31243348

RESUMEN

Niche partitioning can lead to differences in the range dynamics of plant species through its impacts on habitat availability, dispersal, or selection for traits that affect colonization and persistence. We investigated whether niche partitioning into upland and riparian habitats differentiates the range dynamics of two closely related and sympatric eastern Australian trees: the mountain water gum (Tristaniopsis collina) and the water gum (T. laurina). Using genomic data from SNP genotyping of 480 samples, we assessed the impact of biogeographic barriers and tested for signals of range expansion. Circuit theory was used to model isolation-by-resistance across three palaeo-environment scenarios: the Last Glacial Maximum, the Holocene Climate Optimum and present-day (1950-2014). Both trees showed similar genetic structure across historically dry barriers, despite evidence of significant environmental niche differentiation and different post-glacial habitat shifts. Tristaniopsis collina exhibits the signature of serial founder effects consistent with recent or rapid range expansion, whilst T. laurina has genetic patterns consistent with long-term persistence in geographically isolated populations despite occupying a broader bioclimatic niche. We found the minor influence of isolation-by-resistance on both species, though other unknown factors appear to shape genetic variation. We postulate that specialized recruitment traits (adapted to flood-disturbance regimes) rather than habitat availability limited post-glacial range expansion in T. laurina. Our findings indicate that niche breadth does not always facilitate range expansion through colonization and migration across barriers, though it can promote long-term persistence in situ.


Asunto(s)
Genética de Población , Myrtaceae/genética , Simpatría/genética , Árboles/genética , Australia , Cambio Climático , Ecosistema , Variación Genética/genética , Genotipo , Myrtaceae/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple/genética , Árboles/crecimiento & desarrollo , Agua
6.
Syst Biol ; 66(3): 338-351, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27650175

RESUMEN

The evolutionary timescale of angiosperms has long been a key question in biology. Molecular estimates of this timescale have shown considerable variation, being influenced by differences in taxon sampling, gene sampling, fossil calibrations, evolutionary models, and choices of priors. Here, we analyze a data set comprising 76 protein-coding genes from the chloroplast genomes of 195 taxa spanning 86 families, including novel genome sequences for 11 taxa, to evaluate the impact of models, priors, and gene sampling on Bayesian estimates of the angiosperm evolutionary timescale. Using a Bayesian relaxed molecular-clock method, with a core set of 35 minimum and two maximum fossil constraints, we estimated that crown angiosperms arose 221 (251-192) Ma during the Triassic. Based on a range of additional sensitivity and subsampling analyses, we found that our date estimates were generally robust to large changes in the parameters of the birth-death tree prior and of the model of rate variation across branches. We found an exception to this when we implemented fossil calibrations in the form of highly informative gamma priors rather than as uniform priors on node ages. Under all other calibration schemes, including trials of seven maximum age constraints, we consistently found that the earliest divergences of angiosperm clades substantially predate the oldest fossils that can be assigned unequivocally to their crown group. Overall, our results and experiments with genome-scale data suggest that reliable estimates of the angiosperm crown age will require increased taxon sampling, significant methodological changes, and new information from the fossil record. [Angiospermae, chloroplast, genome, molecular dating, Triassic.].


Asunto(s)
Evolución Biológica , Genoma de Planta/genética , Magnoliopsida/clasificación , Magnoliopsida/genética , Filogenia , Teorema de Bayes , Evolución Molecular , Fósiles , Tiempo
7.
Heredity (Edinb) ; 121(2): 126-141, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29632325

RESUMEN

Speciation is a complex process that is fundamental to the origins of biological diversity. While there has been considerable progress in our understanding of speciation, there are still many unanswered questions, especially regarding barriers to gene flow in diverging populations. Eucalyptus is an appropriate system for investigating speciation mechanisms since it comprises species that are rapidly evolving across heterogeneous environments. We examined patterns of genetic variation within and among six closely related Eucalyptus species in subgenus Eucalyptus section Eucalyptus in south-eastern Australia (commonly known as the "green ashes"). We used reduced representation genome sequencing to genotype samples from populations across altitudinal and latitudinal gradients. We found one species, Eucalyptus cunninghamii, to be highly genetically differentiated from the others, and a population of mallees from Mount Banks to be genetically distinct and therefore likely to be a new undescribed species. Only modest levels of differentiation were found between all other species in the study. There was population structure within some species (e.g., E. obstans) corresponding to geographical factors, indicating that vicariance may have played a role in the evolution of the group. Overall, we found that lineages within the green ashes are differentiated to varying extents, from strongly diverged to much earlier stages of the speciation continuum. Furthermore, our results suggest the green ashes represent a group where a range of mechanisms (e.g., reticulate evolution and vicariance) have been operating in concert. These findings not only offer insights into recent speciation mechanisms in Eucalyptus, but also other species complexes.


Asunto(s)
Eucalyptus/genética , Evolución Molecular , Flujo Génico , Especiación Genética , Variación Genética , Metagenómica/métodos , Eucalyptus/clasificación , Genotipo , Geografía , Filogenia , Especificidad de la Especie
8.
Am J Bot ; 104(6): 840-857, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28611071

RESUMEN

PREMISE OF THE STUDY: Phenotypic plasticity is an important means through which organisms cope with environmental variability. We investigated seedling plasticity in the green ash eucalypts within a phylogenetic framework to examine the relationship between plasticity and evolutionary history. The green ashes are a diverse group, which include the tallest flowering plant in the world (Eucalyptus regnans) and a rare mallee less than 1 m tall (E. cunninghamii). METHODS: Seedlings of 12 species were exposed to high and low nutrient and water availability in a factorial experiment. Leaf trait and total plant plasticity were evaluated using the phenotypic plasticity index. A phylogeny of the species was estimated using genome-wide scans. KEY RESULTS: We found significant differences in functional traits across species, growth forms, and substrates in response to changes in resource availability. Many traits (e.g., leaf width) were highly plastic for most species. Interspecific differences in leaf-level plasticity was significant, however plasticity was not correlated with phylogeny. Species with broader environmental niches had higher leaf-level plasticity than species with narrower environmental ranges. CONCLUSIONS: Plastic responses to environmental variability can differ widely among closely related species, and plasticity is therefore likely to be associated with many factors, including habitat and range size, as well as evolutionary history. Our results provided insights for species delimitation in Eucalyptus, which have management implications. Because of the high number of rare species and that other species are commercially important, a more comprehensive understanding of plasticity is essential for predicting their response to changing climates.


Asunto(s)
Ambiente , Eucalyptus/fisiología , Filogenia , Plantones/fisiología , Evolución Biológica , Eucalyptus/clasificación , Fenotipo , Hojas de la Planta/fisiología
9.
Proc Biol Sci ; 282(1820): 20151998, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26645199

RESUMEN

Seed dispersal is a key process in plant spatial dynamics. However, consistently applicable generalizations about dispersal across scales are mostly absent because of the constraints on measuring propagule dispersal distances for many species. Here, we focus on fleshy-fruited taxa, specifically taxa with large fleshy fruits and their dispersers across an entire continental rainforest biome. We compare species-level results of whole-chloroplast DNA analyses in sister taxa with large and small fruits, to regional plot-based samples (310 plots), and whole-continent patterns for the distribution of woody species with either large (more than 30 mm) or smaller fleshy fruits (1093 taxa). The pairwise genomic comparison found higher genetic distances between populations and between regions in the large-fruited species (Endiandra globosa), but higher overall diversity within the small-fruited species (Endiandra discolor). Floristic comparisons among plots confirmed lower numbers of large-fruited species in areas where more extreme rainforest contraction occurred, and re-colonization by small-fruited species readily dispersed by the available fauna. Species' distribution patterns showed that larger-fruited species had smaller geographical ranges than smaller-fruited species and locations with stable refugia (and high endemism) aligned with concentrations of large fleshy-fruited taxa, making them a potentially valuable conservation-planning indicator.


Asunto(s)
Frutas/anatomía & histología , Lauraceae/anatomía & histología , Dispersión de las Plantas , Bosque Lluvioso , Australia , ADN de Plantas/genética , Frutas/genética , Genoma del Cloroplasto , Genoma de Planta , Lauraceae/genética , Semillas , Análisis de Secuencia de ADN
10.
Genetica ; 142(3): 251-64, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24898671

RESUMEN

Contrasting signals of genetic divergence due to historic and contemporary gene flow were inferred for Coachwood, Ceratopetalum apetalum (Cunoniaceae), a wind-dispersed canopy tree endemic to eastern Australian warm temperate rainforest. Analysis of nine nuclear microsatellites across 22 localities revealed two clusters between northern and southern regions and with vicariance centred on the wide Hunter River Valley. Within populations diversity was high indicating a relatively high level of pollen dispersal among populations. Genetic variation was correlated to differences in regional biogeography and ecology corresponding to IBRA regions, primary factors being soil type and rainfall. Eleven haplotypes were identified by chloroplast microsatellite analysis from the same 22 localities. A lack of chloroplast diversity within sites demonstrates limited gene flow via seed dispersal. Network representation indicated regional sharing of haplotypes indicative of multiple Pleistocene refugia as well as deep divergences between regional elements of present populations. Chloroplast differentiation between sites in the upper and lower sections of the northern population is reflective of historic vicariance at the Clarence River Corridor. There was no simple vicariance explanation for the distribution of the divergent southern chlorotype, but its distribution may be explained by the effects of drift from a larger initial gene pool. Both the Hunter and Clarence River Valleys represent significant dry breaks within the species range, consistent with this species being rainfall dependent rather than cold-adapted.


Asunto(s)
Flujo Génico , Variación Genética , Magnoliopsida/genética , Repeticiones de Microsatélite , Dispersión de las Plantas , Australia , Pool de Genes , Genoma del Cloroplasto , Haplotipos , Magnoliopsida/fisiología , Filogeografía , Polinización , Bosque Lluvioso
11.
Ann Bot ; 113(5): 861-72, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24489011

RESUMEN

BACKGROUND AND AIMS: When species cohesion is maintained despite ongoing natural hybridization, many questions are raised about the evolutionary processes operating in the species complex. This study examined the extensive natural hybridization between the Australian native shrubs Lomatia myricoides and L. silaifolia (Proteaceae). These species exhibit striking differences in morphology and ecological preferences, exceeding those found in most studies of hybridization to date. METHODS: Nuclear microsatellite markers (nSSRs), genotyping methods and morphometric analyses were used to uncover patterns of hybridization and the role of gene flow in morphological differentiation between sympatric species. KEY RESULTS: The complexity of hybridization patterns differed markedly between sites, however, signals of introgression were present at all sites. One site provided evidence of a large hybrid swarm and the likely presence of multiple hybrid generations and backcrosses, another site a handful of early generational hybrids and a third site only traces of admixture from a past hybridization event. The presence of cryptic hybrids and a pattern of morphological bimodality amongst hybrids often disguised the extent of underlying genetic admixture. CONCLUSIONS: Distinct parental habitats and phenotypes are expected to form barriers that contribute to the rapid reversion of hybrid populations to their parental character state, due to limited opportunities for hybrid/intermediate advantage. Furthermore, strong genomic filters may facilitate continued gene flow between species without the danger of assimilation. Stochastic fire events facilitate temporal phenological isolation between species and may partly explain the bi-directional and site-specific patterns of hybridization observed. Furthermore, the findings suggest that F1 hybrids are rare, and backcrosses may occur rapidly following these initial hybridization events.


Asunto(s)
Hibridación Genética , Repeticiones de Microsatélite , Hojas de la Planta/anatomía & histología , Proteaceae/anatomía & histología , Proteaceae/genética , Ecosistema , Flujo Génico , Genotipo , Nueva Gales del Sur , Simpatría
12.
Am J Bot ; 101(12): 2121-35, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25480709

RESUMEN

UNLABELLED: • PREMISE OF STUDY: Have Gondwanan rainforest floral associations survived? Where do they occur today? Have they survived continuously in particular locations? How significant is their living floristic signal? We revisit these classic questions in light of significant recent increases in relevant paleobotanical data.• METHODS: We traced the extinction and persistence of lineages and associations through the past across four now separated regions-Australia, New Zealand, Patagonia, and Antarctica-using fossil occurrence data from 63 well-dated Gondwanan rainforest sites and 396 constituent taxa. Fossil sites were allocated to four age groups: Cretaceous, Paleocene-Eocene, Neogene plus Oligocene, and Pleistocene. We compared the modern and ancient distributions of lineages represented in the fossil record to see if dissimilarity increased with time. We quantified similarity-dissimilarity of composition and taxonomic structure among fossil assemblages, and between fossil and modern assemblages.• KEY RESULTS: Strong similarities between ancient Patagonia and Australia confirmed shared Gondwanan rainforest history, but more of the lineages persisted in Australia. Samples of ancient Australia grouped with the extant floras of Australia, New Guinea, New Caledonia, Fiji, and Mt. Kinabalu. Decreasing similarity through time among the regional floras of Antarctica, Patagonia, New Zealand, and southern Australia reflects multiple extinction events.• CONCLUSIONS: Gondwanan rainforest lineages contribute significantly to modern rainforest community assembly and often co-occur in widely separated assemblages far from their early fossil records. Understanding how and where lineages from ancient Gondwanan assemblages co-occur today has implications for the conservation of global rainforest vegetation, including in the Old World tropics.


Asunto(s)
Evolución Biológica , Fósiles , Filogenia , Plantas/genética , Bosque Lluvioso , Clima Tropical , Regiones Antárticas , Australasia , Filogeografía
13.
Plants (Basel) ; 13(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732486

RESUMEN

In alpine ecosystems, elevation broadly functions as a steep thermal gradient, with plant communities exposed to regular fluctuations in hot and cold temperatures. These conditions lead to selective filtering, potentially contributing to species-level variation in thermal tolerance and population-level genetic divergence. Few studies have explored the breadth of alpine plant thermal tolerances across a thermal gradient or the underlying genetic variation thereof. We measured photosystem heat (Tcrit-hot) and cold (Tcrit-cold) thresholds of ten Australian alpine species across elevation gradients and characterised their neutral genetic variation. To reveal the biogeographical drivers of present-day genetic signatures, we also reconstructed temporal changes in habitat suitability across potential distributional ranges. We found intraspecific variation in thermal thresholds, but this was not associated with elevation, nor underpinned by genetic differentiation on a local scale. Instead, regional population differentiation and considerable homozygosity within populations may, in part, be driven by distributional contractions, long-term persistence, and migrations following habitat suitability. Our habitat suitability models suggest that cool-climate-distributed alpine plants may be threatened by a warming climate. Yet, the observed wide thermal tolerances did not reflect this vulnerability. Conservation efforts should seek to understand variations in species-level thermal tolerance across alpine microclimates.

14.
BMC Ecol ; 13: 8, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23497206

RESUMEN

BACKGROUND: With high quantity and quality data production and low cost, next generation sequencing has the potential to provide new opportunities for plant phylogeographic studies on single and multiple species. Here we present an approach for in silicio chloroplast DNA assembly and single nucleotide polymorphism detection from short-read shotgun sequencing. The approach is simple and effective and can be implemented using standard bioinformatic tools. RESULTS: The chloroplast genome of Toona ciliata (Meliaceae), 159,514 base pairs long, was assembled from shotgun sequencing on the Illumina platform using de novo assembly of contigs. To evaluate its practicality, value and quality, we compared the short read assembly with an assembly completed using 454 data obtained after chloroplast DNA isolation. Sanger sequence verifications indicated that the Illumina dataset outperformed the longer read 454 data. Pooling of several individuals during preparation of the shotgun library enabled detection of informative chloroplast SNP markers. Following validation, we used the identified SNPs for a preliminary phylogeographic study of T. ciliata in Australia and to confirm low diversity across the distribution. CONCLUSIONS: Our approach provides a simple method for construction of whole chloroplast genomes from shotgun sequencing of whole genomic DNA using short-read data and no available closely related reference genome (e.g. from the same species or genus). The high coverage of Illumina sequence data also renders this method appropriate for multiplexing and SNP discovery and therefore a useful approach for landscape level studies of evolutionary ecology.


Asunto(s)
Genoma del Cloroplasto , Meliaceae/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos , Australia , Biología Computacional , ADN de Cloroplastos/genética , ADN de Plantas/genética , Datos de Secuencia Molecular , Filogeografía , Árboles/genética
15.
Trends Ecol Evol ; 38(10): 896-898, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37573174

RESUMEN

Indigenous Peoples have manipulated environments and species for millennia. However, restoration science often overlooks ancient human plant dispersal, niche construction, and selection pressures that may have resulted in plant 'cultural traits'. Concerted efforts to acknowledge Indigenous plant-use histories in restoration could help to abate the coextinction of species and cultures.


Asunto(s)
Cultura , Restauración y Remediación Ambiental , Pueblos Indígenas , Plantas , Humanos
16.
Plants (Basel) ; 12(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36771606

RESUMEN

Plant mating systems shape patterns of genetic diversity and impact the long-term success of populations. As such, they are relevant to the design of seed collections aiming to maximise genetic diversity (e.g., germplasm conservation, ecological restoration). However, for most species, little is known empirically about how variation in mating systems and genetic diversity is distributed. We investigated the relationship between genetic diversity and mating systems in two functionally similar, co-occurring species of Hakea (Proteaceae), and evaluated the extent to which genetic diversity was captured in seeds. We genotyped hundreds of seedlings and mother plants via DArTseq, and developed novel implementations of two approaches to inferring the mating system from SNP data. A striking contrast in patterns of genetic diversity between H. sericea and H. teretifolia was revealed, consistent with a contrast in their mating systems. While both species had mixed mating systems, H. sericea was found to be habitually selfing, while H. teretifolia more evenly employed both selfing and outcrossing. In both species, seed collection schemes maximised genetic diversity by increasing the number of maternal lines and sites sampled, but twice as many sites were needed for the selfing species to capture equivalent levels of genetic variation at a regional scale.

17.
bioRxiv ; 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37662366

RESUMEN

We present the genome of the living fossil, Wollemia nobilis, a southern hemisphere conifer morphologically unchanged since the Cretaceous. Presumed extinct until rediscovery in 1994, the Wollemi pine is critically endangered with less than 60 wild adults threatened by intensifying bushfires in the Blue Mountains of Australia. The 12 Gb genome is among the most contiguous large plant genomes assembled, with extremely low heterozygosity and unusual abundance of DNA transposons. Reduced representation and genome re-sequencing of individuals confirms a relictual population since the last major glacial/drying period in Australia, 120 ky BP. Small RNA and methylome sequencing reveal conservation of ancient silencing mechanisms despite the presence of thousands of active and abundant transposons, including some transferred horizontally to conifers from arthropods in the Jurassic. A retrotransposon burst 8-6 my BP coincided with population decline, possibly as an adaptation enhancing epigenetic diversity. Wollemia, like other conifers, is susceptible to Phytophthora, and a suite of defense genes, similar to those in loblolly pine, are targeted for silencing by sRNAs in leaves. The genome provides insight into the earliest seed plants, while enabling conservation efforts.

18.
BMC Evol Biol ; 12: 149, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22906180

RESUMEN

BACKGROUND: Four of the five species of Telopea (Proteaceae) are distributed in a latitudinal replacement pattern on the south-eastern Australian mainland. In similar circumstances, a simple allopatric speciation model that identifies the origins of genetic isolation within temporal geographic separation is considered as the default model. However, secondary contact between differentiated lineages can result in similar distributional patterns to those arising from a process of parapatric speciation (where gene flow between lineages remains uninterrupted during differentiation). Our aim was to use the characteristic distributional patterns in Telopea to test whether it reflected the evolutionary models of allopatric or parapatric speciation. Using a combination of genetic evidence and environmental niche modelling, we focused on three main questions: do currently described geographic borders coincide with genetic and environmental boundaries; are there hybrid zones in areas of secondary contact between closely related species; did species distributions contract during the last glacial maximum resulting in distributional gaps even where overlap and hybridisation currently occur? RESULTS: Total genomic DNA was extracted from 619 individuals sampled from 36 populations representing the four species. Seven nuclear microsatellites (nSSR) and six chloroplast microsatellites (cpSSR) were amplified across all populations. Genetic structure and the signature of admixture in overlap zones was described using the Bayesian clustering methods implemented in STUCTURE and NewHybrids respectively. Relationships between chlorotypes were reconstructed as a median-joining network. Environmental niche models were produced for all species using environmental parameters from both the present day and the last glacial maximum (LGM).The nSSR loci amplified a total of 154 alleles, while data for the cpSSR loci produced a network of six chlorotypes. STRUCTURE revealed an optimum number of five clusters corresponding to the four recognised species with the additional division of T. speciosissima into populations north and south of the Shoalhaven River valley. Unexpectedly, the northern disjunct population of T. oreades grouped with T. mongaensis and was identified as a hybrid swarm by the Bayesian assignment test implemented in NewHybrids. Present day and LGM environmental niche models differed dramatically, suggesting that distributions of all species had repeatedly expanded and contracted in response to Pleistocene climatic oscillations and confirming strongly marked historical distributional gaps among taxes. CONCLUSIONS: Genetic structure and bio-climatic modeling results are more consistent with a history of allopatric speciation followed by repeated episodes of secondary contact and localised hybridisation, rather than with parapatric speciation. This study on Telopea shows that the evidence for temporal exclusion of gene flow can be found even outside obvious geographical contexts, and that it is possible to make significant progress towards excluding parapatric speciation as a contributing evolutionary process.


Asunto(s)
Evolución Molecular , Especiación Genética , Hibridación Genética , Modelos Genéticos , Proteaceae/genética , Australia , Teorema de Bayes , Núcleo Celular/genética , Clima , ADN de Cloroplastos/genética , ADN de Plantas/genética , Ecosistema , Flujo Génico , Geografía , Repeticiones de Microsatélite , Modelos Biológicos , Proteaceae/clasificación , Análisis de Secuencia de ADN
19.
Am J Bot ; 99(12): 2045-57, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23221499

RESUMEN

PREMISE OF THE STUDY: The glacial cycles of the Quaternary did not impact Australia in the same way as Europe and North America. Here we investigate the history of population isolation, species differentiation, and hybridization in the southeastern Australian landscape, using five species of Lomatia (Proteaceae). We use a chloroplast DNA phylogeography to assess chloroplast haplotype (chlorotype) sharing among these species and whether species with shared distributions have been affected by shared biogeographic barriers. • METHODS: We used six chloroplast DNA simple sequence repeats (cpSSR) across five species of Lomatia, sampled across their entire distributional range in southeastern Australia. Resulting size data were combined, presented as a network, and visualized on a map. Biogeographical barriers were tested using AMOVA. To explore hypotheses of chlorotype origin, we converted the network into a cladogram and reconciled with all possible species trees using parsimony-based tree mapping. • KEY RESULTS: Some chlorotypes were shared across multiple species of Lomatia in the study, including between morphologically differentiated species. Chlorotypes were either widespread in distribution or geographically restricted to specific regions. Biogeographical structure was identified across the range of Lomatia. The most parsimonious reconciled tree incorporated horizontal transfer of chlorotypes. • CONCLUSIONS: Lomatia shows evidence of both incomplete lineage sorting and extensive hybridization between co-occurring species. Although the species in the study appear to have responded to a number of biogeographic barriers to varying degrees, our findings identified the Hunter River Valley as the most important long-term biogeographic barrier for the genus in southeastern Australia.


Asunto(s)
ADN de Cloroplastos/genética , Especiación Genética , Hibridación Genética , Proteaceae/genética , Australia , Haplotipos , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Filogenia , Filogeografía , Reacción en Cadena de la Polimerasa , Proteaceae/anatomía & histología , Proteaceae/clasificación , Proteaceae/fisiología , Análisis de Secuencia de ADN , Homología de Secuencia
20.
Genes (Basel) ; 13(3)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35328030

RESUMEN

Over millennia, Indigenous peoples have dispersed the propagules of non-crop plants through trade, seasonal migration or attending ceremonies; and potentially increased the geographic range or abundance of many food species around the world. Genomic data can be used to reconstruct these histories. However, it can be difficult to disentangle anthropogenic from non-anthropogenic dispersal in long-lived non-crop species. We developed a genomic workflow that can be used to screen out species that show patterns consistent with faunal dispersal or long-term isolation, and identify species that carry dispersal signals of putative human influence. We used genotyping-by-sequencing (DArTseq) and whole-plastid sequencing (SKIMseq) to identify nuclear and chloroplast Single Nucleotide Polymorphisms in east Australian rainforest trees (4 families, 7 genera, 15 species) with large (>30 mm) or small (<30 mm) edible fruit, either with or without a known history of use by Indigenous peoples. We employed standard population genetic analyses to test for four signals of dispersal using a limited and opportunistically acquired sample scheme. We expected different patterns for species that fall into one of three broadly described dispersal histories: (1) ongoing faunal dispersal, (2) post-megafauna isolation and (3) post-megafauna isolation followed by dispersal of putative human influence. We identified five large-fruited species that displayed strong population structure combined with signals of dispersal. We propose coalescent methods to investigate whether these genomic signals can be attributed to post-megafauna isolation and dispersal by Indigenous peoples.


Asunto(s)
Pueblos Indígenas , Árboles , Australia , Frutas/genética , Genómica , Humanos , Pueblos Indígenas/genética , Árboles/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA