Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Bot ; 110(8): e16221, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37598386

RESUMEN

PREMISE: Acmopyle (Podocarpaceae) comprises two extant species from Oceania that are physiologically restricted to ever-wet rainforests, a confirmed fossil record based on leaf adpressions and cuticles in Australia since the Paleocene, and a few uncertain reports from New Zealand, Antarctica, and South America. We investigated fossil specimens with Acmopyle affinities from the early Eocene Laguna del Hunco site in Patagonia, Argentina. METHODS: We studied 42 adpression leafy-shoot fossils and included them in a total evidence phylogenetic analysis. RESULTS: Acmopyle grayae sp. nov. is based on heterophyllous leafy shoots with three distinct leaf types. Among these, bilaterally flattened leaves uniquely preserve subparallel, linear features that we interpret as accessory transfusion tissue (ATT, an extra-venous water-conducting tissue). Some apical morphologies of A. grayae shoots are compatible with the early stages of ovuliferous cone development. Our phylogenetic analysis recovers the new species in a polytomy with the two extant Acmopyle species. We report several types of insect-herbivory damage. We also transfer Acmopyle engelhardti from the middle Eocene Río Pichileufú flora to Dacrycarpus engelhardti comb. nov. CONCLUSIONS: We confirm the biogeographically significant presence of the endangered West Pacific genus Acmopyle in Eocene Patagonia. Acmopyle is one of the most drought-intolerant genera in Podocarpaceae, possibly due to the high collapse risk of the ATT, and thus the new fossil species provides physiological evidence for the presence of an ever-wet rainforest environment at Laguna del Hunco during the Early Eocene Climatic Optimum.


Asunto(s)
Fósiles , Bosque Lluvioso , Filogenia , Argentina , Australia , Cycadopsida
2.
Am J Bot ; 107(5): 806-832, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32388874

RESUMEN

PREMISE: Eocene floras of Patagonia document biotic response to the final separation of Gondwana. The conifer genus Araucaria, distributed worldwide during the Mesozoic, has a disjunct extant distribution between South America and Australasia. Fossils assigned to Australasian Araucaria Sect. Eutacta usually are represented by isolated organs, making diagnosis difficult. Araucaria pichileufensis E.W. Berry, from the middle Eocene Río Pichileufú (RP) site in Argentine Patagonia, was originally placed in Sect. Eutacta and later reported from the early Eocene Laguna del Hunco (LH) locality. However, the relationship of A. pichileufensis to Sect. Eutacta and the conspecificity of the Araucaria material among these Patagonian floras have not been tested using modern methods. METHODS: We review the type material of A. pichileufensis alongside large (n = 192) new fossil collections of Araucaria from LH and RP, including multi-organ preservation of leafy branches, ovuliferous complexes, and pollen cones. We use a total evidence phylogenetic analysis to analyze relationships of the fossils to Sect. Eutacta. RESULTS: We describe Araucaria huncoensis sp. nov. from LH and improve the whole-plant concept for Araucaria pichileufensis from RP. The two species respectively resolve in the crown and stem of Sect. Eutacta. CONCLUSIONS: Our results confirm the presence and indicate the survival of Sect. Eutacta in South America during early Antarctic separation. The exceptionally complete fossils significantly predate several molecular age estimates for crown Eutacta. The differentiation of two Araucaria species demonstrates conifer turnover during climate change and initial South American isolation from the early to middle Eocene.


Asunto(s)
Araucaria , Fósiles , Regiones Antárticas , Australasia , Filogenia , América del Sur
3.
Appl Plant Sci ; 10(6): e11500, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518947

RESUMEN

Premise: Digital image libraries are an integral part of specimen-based research. However, coding and extracting metadata for hundreds of specimens on a personal computer can be complex. In addition, most existing workflows require downsampling or platform switching and do not link character data directly to the images. Methods and Results: We demonstrate a method to code and embed into images the standard leaf architecture and insect-damage characters that are widely used in paleobotany. Using the visual file browser Adobe Bridge, customizable and searchable keywords can be applied directly and reversibly to individual full-resolution images, and the data can be extracted and formatted into a matrix using scripts. Conclusions: Our approach is intuitive and acts as a digital mimic and complement to the experience of sorting and analyzing specimens in-person. Keywords can be easily customized for other data types that require visual sorting using image libraries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA