Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Prehosp Disaster Med ; 29(6): 600-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25387543

RESUMEN

INTRODUCTION: Disasters create major strain on energy infrastructure in affected communities. Advances in microgrid technology offer the potential to improve "off-grid" mobile disaster medical response capabilities beyond traditional diesel generation. The Carolinas Medical Center's mobile emergency medical unit (MED-1) Green Project (M1G) is a multi-phase project designed to demonstrate the benefits of integrating distributive generation (DG), high-efficiency batteries, and "smart" energy utilization in support of major out-of-hospital medical response operations. METHODS: Carolinas MED-1 is a mobile medical facility composed of a fleet of vehicles and trailers that provides comprehensive medical care capacities to support disaster response and special-event operations. The M1G project partnered with local energy companies to deploy energy analytics and an energy microgrid in support of mobile clinical operations for the 2012 Democratic National Convention (DNC) in Charlotte, North Carolina (USA). Energy use data recorded throughout the DNC were analyzed to create energy utilization models that integrate advanced battery technology, solar photovoltaic (PV), and energy conservation measures (ECM) to improve future disaster response operations. RESULTS: The generators that supply power for MED-1 have a minimum loading ratio (MLR) of 30 kVA. This means that loads below 30 kW lead to diesel fuel consumption at the same rate as a 30 kW load. Data gathered from the two DNC training and support deployments showed the maximum load of MED-1 to be around 20 kW. This discrepancy in MLR versus actual load leads to significant energy waste. The lack of an energy storage system reduces generator efficiency and limits integration of alternative energy generation strategies. A storage system would also allow for alternative generation sources, such as PV, to be incorporated. Modeling with a 450 kWh battery bank and 13.5 kW PV array showed a 2-fold increase in potential deployment times using the same amount of fuel versus the current conventional system. CONCLUSIONS: The M1G Project demonstrated that the incorporation of a microgrid energy management system and a modern battery system maximize the MED-1 generators' output. Using a 450 kWh battery bank and 13.5 kW PV array, deployment operations time could be more than doubled before refueling. This marks a dramatic increase in patient care capabilities and has significant public health implications. The results highlight the value of smart-microgrid technology in developing energy independent mobile medical capabilities and expanding cost-effective, high-quality medical response.


Asunto(s)
Aniversarios y Eventos Especiales , Planificación en Desastres , Suministros de Energía Eléctrica , Unidades Móviles de Salud , Aglomeración , Humanos , Aplicaciones Móviles , Política , Estados Unidos
2.
Disaster Med Public Health Prep ; 8(3): 252-259, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24992943

RESUMEN

Modern health care and disaster response are inextricably linked to high volume, reliable, quality power. Disasters place major strain on energy infrastructure in affected communities. Advances in renewable energy and microgrid technology offer the potential to improve mobile disaster medical response capabilities. However, very little is known about the energy requirements of and alternative power sources in disaster response. A gap analysis of the energy components of modern disaster response reveals multiple deficiencies. The MED-1 Green Project has been executed as a multiphase project designed to identify energy utilization inefficiencies, decrease demands on diesel generators, and employ modern energy management strategies to expand operational independence. This approach, in turn, allows for longer deployments in potentially more austere environments and minimizes the unit's environmental footprint. The ultimate goal is to serve as a proof of concept for other mobile medical units to create strategies for energy independence.


Asunto(s)
Defensa Civil/organización & administración , Medicina de Desastres/organización & administración , Planificación en Desastres , Suministros de Energía Eléctrica/provisión & distribución , Modelos Organizacionales , North Carolina , Trabajo de Rescate/organización & administración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA