Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Mol Genet ; 24(17): 4916-32, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26060189

RESUMEN

Therapy-responsive biomarkers are an important and unmet need in the muscular dystrophy field where new treatments are currently in clinical trials. By using a comprehensive high-resolution mass spectrometry approach and western blot validation, we found that two fragments of the myofibrillar structural protein myomesin-3 (MYOM3) are abnormally present in sera of Duchenne muscular dystrophy (DMD) patients, limb-girdle muscular dystrophy type 2D (LGMD2D) and their respective animal models. Levels of MYOM3 fragments were assayed in therapeutic model systems: (1) restoration of dystrophin expression by antisense oligonucleotide-mediated exon-skipping in mdx mice and (2) stable restoration of α-sarcoglycan expression in KO-SGCA mice by systemic injection of a viral vector. Following administration of the therapeutic agents MYOM3 was restored toward wild-type levels. In the LGMD model, where different doses of vector were used, MYOM3 restoration was dose-dependent. MYOM3 fragments showed lower inter-individual variability compared with the commonly used creatine kinase assay, and correlated better with the restoration of the dystrophin-associated protein complex and muscle force. These data suggest that the MYOM3 fragments hold promise for minimally invasive assessment of experimental therapies for DMD and other neuromuscular disorders.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Conectina/metabolismo , Distrofias Musculares/metabolismo , Proteómica , Adolescente , Adulto , Animales , Biomarcadores , Estudios de Casos y Controles , Niño , Preescolar , Conectina/sangre , Creatina Quinasa , Modelos Animales de Enfermedad , Humanos , Espectrometría de Masas , Ratones , Ratones Endogámicos mdx , Distrofias Musculares/sangre , Distrofias Musculares/terapia , Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/metabolismo , Proteómica/métodos , Resultado del Tratamiento , Adulto Joven
2.
J Clin Invest ; 134(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38015640

RESUMEN

Glycogen storage disease type III (GSDIII) is a rare inborn error of metabolism affecting liver, skeletal muscle, and heart due to mutations of the AGL gene encoding for the glycogen debranching enzyme (GDE). No curative treatment exists for GSDIII. The 4.6 kb GDE cDNA represents the major technical challenge toward the development of a single recombinant adeno-associated virus-derived (rAAV-derived) vector gene therapy strategy. Using information on GDE structure and molecular modeling, we generated multiple truncated GDEs. Among them, an N-terminal-truncated mutant, ΔNter2-GDE, had a similar efficacy in vivo compared with the full-size enzyme. A rAAV vector expressing ΔNter2-GDE allowed significant glycogen reduction in heart and muscle of Agl-/- mice 3 months after i.v. injection, as well as normalization of histology features and restoration of muscle strength. Similarly, glycogen accumulation and histological features were corrected in a recently generated Agl-/- rat model. Finally, transduction with rAAV vectors encoding ΔNter2-GDE corrected glycogen accumulation in an in vitro human skeletal muscle cellular model of GSDIII. In conclusion, our results demonstrated the ability of a single rAAV vector expressing a functional mini-GDE transgene to correct the muscle and heart phenotype in multiple models of GSDIII, supporting its clinical translation to patients with GSDIII.


Asunto(s)
Sistema de la Enzima Desramificadora del Glucógeno , Enfermedad del Almacenamiento de Glucógeno Tipo III , Humanos , Ratones , Ratas , Animales , Enfermedad del Almacenamiento de Glucógeno Tipo III/genética , Enfermedad del Almacenamiento de Glucógeno Tipo III/terapia , Sistema de la Enzima Desramificadora del Glucógeno/genética , Músculo Esquelético/metabolismo , Glucógeno/metabolismo , Transgenes
3.
JCI Insight ; 9(11)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753465

RESUMEN

Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that 2 distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a potentially novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice livers, dual AAV gene therapy combined with rapamycin reduced the effect of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and to support clinical translation.


Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos , Hígado , Sirolimus , Animales , Sirolimus/farmacología , Sirolimus/uso terapéutico , Dependovirus/genética , Terapia Genética/métodos , Ratones , Hígado/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Músculo Esquelético/metabolismo , Fenotipo , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Humanos , Masculino
4.
Mol Ther Methods Clin Dev ; 20: 169-180, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33473356

RESUMEN

Ornithine transcarbamylase deficiency (OTCD) is an X-linked liver disorder caused by partial or total loss of OTC enzyme activity. It is characterized by elevated plasma ammonia, leading to neurological impairments, coma, and death in the most severe cases. OTCD is managed by combining dietary restrictions, essential amino acids, and ammonia scavengers. However, to date, liver transplantation provides the best therapeutic outcome. AAV-mediated gene-replacement therapy represents a promising curative strategy. Here, we generated an AAV2/8 vector expressing a codon-optimized human OTC cDNA by the α1-AAT liver-specific promoter. Unlike standard codon-optimization approaches, we performed multiple codon-optimization rounds via common algorithms and ortholog sequence analysis that significantly improved mRNA translatability and therapeutic efficacy. AAV8-hOTC-CO (codon optimized) vector injection into adult OTCSpf-Ash mice (5.0E11 vg/kg) mediated long-term complete correction of the phenotype. Adeno-Associated viral (AAV) vector treatment restored the physiological ammonia detoxification liver function, as indicated by urinary orotic acid normalization and by conferring full protection against an ammonia challenge. Removal of liver-specific transcription factor binding sites from the AAV backbone did not affect gene expression levels, with a potential improvement in safety. These results demonstrate that AAV8-hOTC-CO gene transfer is safe and results in sustained correction of OTCD in mice, supporting the translation of this approach to the clinic.

5.
Mol Ther Methods Clin Dev ; 10: 291-302, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30155509

RESUMEN

Under intravenous delivery, recombinant adeno-associated vectors (rAAVs) interact with blood-borne components in ways that can critically alter their therapeutic efficiencies. We have previously shown that interaction with human galectin 3 binding protein dramatically reduces rAAV-6 efficacy, whereas binding of mouse C-reactive protein improves rAAV-1 and rAAV-6 transduction effectiveness. Herein we have assessed, through qualitative and quantitative studies, the proteins from mouse and human sera that bind with rAAV-8 and rAAV-9, two vectors that are being considered for clinical trials for patients with neuromuscular disorders. We show that, in contrast to rAAV-1 and rAAV-6, there was a substantial similarity in protein binding patterns between mouse and human sera for these vector serotypes. To establish an in vivo role for the vector binding of these sera proteins, we chose to study platelet factor 4 (PF4), which interacts with both vectors in both mouse and human sera. Experiments using PF4-knockout mice showed that a complete lack of PF4 did not alter skeletal muscle transduction for these vectors, whereas heart transduction was moderately improved. Our results strongly support our position that the impact of serum proteins on the transduction properties of rAAV-8 and rAAV-9, already observed in mouse models, should be similar in human preclinical trials.

6.
Neuromuscul Disord ; 28(7): 564-571, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29776718

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in the dystrophin gene leading to the absence of the normal dystrophin protein. The efforts of many laboratories brought new treatments of DMD to the reality, but ongoing and forthcoming clinical trials suffer from absence of valuable biomarkers permitting to follow the outcome of the treatment day by day and to adjust the treatment if needed. In the present study the levels of 128 urinary proteins including growth factors, cytokines and chemokines were compared in urine of DMD patients and age related control subjects by antibody array approach. Surprisingly, statistically significant difference was observed only for urinary ferritin whose level was 50 times higher in young DMD patients. To explain the observed high urinary ferritin content we analysed the levels of iron, iron containing proteins and proteins involved in regulation of iron metabolism in serum and urine of DMD patients and their age-matched healthy controls. Obtained data strongly suggest that elevated level of urinary ferritin is functionally linked to the renal management of myoglobin iron derived from leaky muscles of DMD patients. This first observation of the high level of ferritin in urine of DMD patients permits to consider this protein as a new urinary biomarker in muscular dystrophies and sheds light on the mechanisms of iron metabolism and kidney functioning in DMD.


Asunto(s)
Ferritinas/orina , Hierro/metabolismo , Distrofia Muscular de Duchenne/orina , Mioglobina/metabolismo , Adolescente , Biomarcadores/metabolismo , Niño , Preescolar , Citocinas/orina , Humanos , Masculino , Adulto Joven
7.
Neuromuscul Disord ; 24(7): 563-73, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24813925

RESUMEN

Diagnosis of muscular dystrophies is currently based on invasive methods requiring muscle biopsies or blood tests. The aim of the present study was to identify urinary biomarkers as a diagnostic tool for muscular dystrophies. Here, the urinary proteomes of Duchenne muscular dystrophy (DMD) patients and healthy donors were compared with a bottom-up proteomic approach. Label-free analysis of more than 1100 identified proteins revealed that 32 of them were differentially expressed between healthy controls and DMD patients. Among these 32 proteins, titin showed the highest fold change between healthy subjects and DMD patients. Interestingly, most of the sequenced peptides belong to the N-terminal and C-terminal parts of titin, and the presence of the corresponding fragments in the urine of DMD patients was confirmed by Western blot analysis. Analysis of a large cohort of DMD patients and age-matched controls (a total of 104 individuals aged from 3 to 20 years) confirmed presence of the N-ter fragment in all but two patients. In two DMD patients aged 16 and 20 years this fragment was undetectable and two healthy controls of 16 and 19 years with serum CK >800 IU/L demonstrated a low level of the fragment. N- and C-terminal titin fragments were also detected in urine from patients with other muscular dystrophies such as Becker muscular dystrophy and Limb-girdle muscular dystrophy (type 1D, 2D and 2J) but not in neurogenic spinal muscular atrophy. They were also present in urine of dystrophin-deficient animal models (GRMD dogs and mdx mice). Titin is the first urinary biomarker that offers the possibility to develop a simple, non-invasive and easy-to-use test for pre-screening of muscular dystrophies, and may also prove to be useful for the non-invasive follow up of DMD patients under treatment.


Asunto(s)
Conectina/orina , Distrofia Muscular de Duchenne/orina , Proteómica/métodos , Adolescente , Factores de Edad , Animales , Biomarcadores/orina , Western Blotting , Niño , Preescolar , Estudios de Cohortes , Conectina/genética , Forma MM de la Creatina-Quinasa/sangre , Perros , Femenino , Humanos , Masculino , Espectrometría de Masas , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/orina , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA