Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38928317

RESUMEN

Imbalanced nutrition, such as a high-fat/high-carbohydrate diet, is associated with negative effects on human health. The composition and metabolic activity of the human gut microbiota are closely related to the type of diet and have been shown to change significantly in response to changes in food content and food supplement administration. Alkylresorcinols (ARs) are lipophilic molecules that have been found to improve lipid metabolism and glycemic control and decrease systemic inflammation. Furthermore, alkylresorcinol intake is associated with changes in intestinal microbiota metabolic activity. However, the exact mechanism through which alkylresorcinols modulate microbiota activity and host metabolism has not been determined. In this study, alterations in the small intestinal microbiota (SIM) and the large intestinal microbiota (LIM) were investigated in mice fed a high-fat diet with or without pentadecylresorcinol (C15) supplementation. High-throughput sequencing was applied for jejunal and colonic microbiota analysis. The results revealed that C15 supplementation in combination with a high-fat diet could decrease blood glucose levels. High-throughput sequencing analysis indicated that C15 intake significantly increased (p < 0.0001) the abundance of the probiotic bacteria Akkermansia muciniphila and Bifidobacterium pseudolongum in both the small and large intestines and increased the alpha diversity of LIM (p < 0.05), but not SIM. The preliminary results suggested that one of the mechanisms of the protective effects of alkylresorcinol on a high-fat diet is the modulation of the content of SIM and LIM and metabolic activity to increase the probiotic bacteria that alleviate unhealthy metabolic changes in the host.


Asunto(s)
Akkermansia , Dieta Alta en Grasa , Suplementos Dietéticos , Microbioma Gastrointestinal , Resorcinoles , Animales , Dieta Alta en Grasa/efectos adversos , Resorcinoles/farmacología , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Akkermansia/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Intestino Delgado/efectos de los fármacos , Intestino Delgado/microbiología , Intestino Delgado/metabolismo
2.
Biomedicines ; 12(6)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38927487

RESUMEN

Currently, obesity is a critical global public health burden. Numerous studies have demonstrated the regulation of the pathogenesis of obesity and metabolic abnormalities by the gut microbiota and microbial factors; however, their involvement in the various degrees of obesity is not yet well understood. Previously, obesity has been shown to be associated with decreased levels of vitamin B12. Considering exclusive microbial production of vitamin B12, we hypothesized that a decrease in cobalamin levels in obese individuals may be at least partially caused by its depleted production in the intestinal tract by the commensal microbiota. In the present study, our aim was to estimate the abundance of enzymes and metabolic pathways for vitamin B12 synthesis in the gut microbiota of mouse models of alimentary and genetically determined obesity, to evaluate the contribution of the obesogenic microbiome to vitamin B12 synthesis in the gut. We have defined a significantly lower predicted abundance of enzymes and metabolic pathways for vitamin B12 biosynthesis in obese mice compared to non-obese mice, wherein enzyme depletion was more pronounced in lepr(-/-) (db/db) mice, which developed severe obesity. The predicted abundance of enzymes involved in cobalamin synthesis is strongly correlated with the representation of several microbes in high-fat diet-fed mice, while there were almost no correlations in db/db mice. Therefore, the degree of obesity and the composition of the correspondent microbiota are the main contributors to the representation of genes and pathways for cobalamin biosynthesis in the mouse gut.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA