Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Acoust Soc Am ; 150(1): 367, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34340464

RESUMEN

Natural and anthropogenic infrasound may travel vast distances, making it an invaluable resource for monitoring phenomena such as nuclear explosions, volcanic eruptions, severe storms, and many others. Typically, these waves are captured using pressure sensors, which cannot encode the direction of arrival-critical information when the source location is not known beforehand. Obtaining this information therefore requires arrays of sensors with apertures ranging from tens of meters to kilometers depending on the wavelengths of interest. This is often impractical in locations that lack the necessary real estate (urban areas, rugged regions, or remote islands); in any case, it requires multiple power, digitizer, and telemetry deployments. Here, the theoretical basis behind a compact infrasound direction of arrival sensor based on the acoustic metamaterials is presented. This sensor occupies a footprint that is orders of magnitude smaller than the span of a typical infrasound array. The diminutive size of the unit greatly expands the locations where it can be deployed. The sensor design is described, its ability to determine the direction of arrival is evaluated, and further avenues of study are suggested.

2.
J Acoust Soc Am ; 145(4): 2601, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31046349

RESUMEN

Analytical solutions are presented for broadband sound fields in three rectangular enclosures with absorption applied on the floor and ceiling, rigid sidewalls, and a vertically oriented dipole source. The solutions are intended to serve as benchmarks that can be used to assess the performance of broadband techniques, particularly energy-based methods, in a relatively straightforward configuration with precisely specified boundary conditions. A broadband Helmholtz solution is developed using a frequency-by-frequency modal approach to determine the exact band averaged mean-square pressures along spatial trajectories within each enclosure. Due to the specific choice of enclosure configuration and absorption distribution, an approximate specular solution can be obtained through a summation of uncorrelated image sources. Comparisons between the band averaged Helmholtz solution and the uncorrelated image solution reveal excellent agreement for a wide range of absorption levels and improve the understanding of correlation effects in broadband sound fields. A boundary element solution with diffuse boundaries is also presented, which produces consistently higher mean-square pressures in comparison with the specular solution, emphasizing the careful attention that must be placed on correctly modeling reflecting boundary conditions and demonstrating the errors that can result from assuming a Lambertian surface.

3.
JASA Express Lett ; 2(5): 054001, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-36154067

RESUMEN

Free-floating balloons are an emerging platform for infrasound recording, but they cannot host arrays sufficiently wide for multi-sensor acoustic direction finding techniques. Because infrasound waves are longitudinal, the balloon motion in response to acoustic loading can be used to determine the signal azimuth. This technique, called "aeroseismometry," permits sparse balloon-borne networks to geolocate acoustic sources. This is demonstrated by using an aeroseismometer on a stratospheric balloon to measure the direction of arrival of acoustic waves from successive ground chemical explosions. A geolocation algorithm adapted from hydroacoustics is then used to calculate the location of the explosions.


Asunto(s)
Acústica , Sonido , Algoritmos , Movimiento (Física) , Espectrografía del Sonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA