Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 33(1): 11-18, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-27992713

RESUMEN

The ability to control the growth of materials with nanosized precision as well as a complex hollow morphology provides rationale for the study of systems comprising both characteristics. This study explores the design of TiO2 hollow nanotube shells deposited by atomic layer deposition (ALD) on vertically aligned SnO2 nanorods grown using the vapor-liquid-solid technique. The sacrificial template approach in combination with highly conformal coating advantages of ALD resulted in a highly reproducible method to create a large surface area covered by TiO2-protected SnO2 nanorods, which are about 60-100 nm in diameter and approximately 1 µm in length. ZnO was used as a sacrificial layer to create a 30 nm gap between SnO2 nanorods and 10 nm of TiO2 shells. Chemical etching of the sacrificial layer was used to create the desired hollow nanocomposite. A coin half-cell battery has been assembled using the TiO2-protected SnO2 nanorods as an anode electrode and lithium foil as a counter electrode and tested for lithium storage during 70 cycles of charge/discharge in a range of 0.5-2.5 V. The TiO2 hollow shell functioned as a good and robust enhancer for both absolute capacity and current rate capabilities of vertically aligned SnO2 nanorods; an improvement in cyclic stability was also observed. This advanced self-standing hollow configuration provides several unique advantages for energy storage device applications including enhanced lithiation for superior energy storage performance.

2.
Sci Rep ; 11(1): 1795, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469054

RESUMEN

We have studied optical properties of single-layer and multi-fold nanoporous gold leaf (NPGL) metamaterials and observed highly unusual transmission spectra composed of two well-resolved peaks. We explain this phenomenon in terms of a surface plasmon absorption band positioned on the top of a broader transmission band, the latter being characteristic of both homogeneous "solid" and inhomogeneous "diluted" Au films. The transmission spectra of NPGL metamaterials were shown to be controlled by external dielectric environments, e.g. water and applied voltage in an electrochemical cell. This paves the road to numerous functionalities of the studied tunable and active metamaterials, including control of spontaneous emission, energy transfer and many others.

3.
Nanomaterials (Basel) ; 10(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33120972

RESUMEN

We have studied emission kinetics of HITC laser dye on top of glass, smooth Au films, and randomly structured porous Au nanofoams. The observed concentration quenching of luminescence of highly concentrated dye on top of glass (energy transfer to acceptors) and the inhibition of the concentration quenching in vicinity of smooth Au films were in accord with our recent findings. Intriguingly, the emission kinetics recorded in different local spots of the Au nanofoam samples had a spread of the decay rates, which was large at low dye concentrations and became narrower with increase of the dye concentration. We infer that in different subvolumes of Au nanofoams, HITC molecules are coupled to the nanofoams weaker or stronger. The inhibition of the concentration quenching in Au nanofoams was stronger than on top of smooth Au films. This was true for all weakly and strongly coupled subvolumes contributing to the spread of the emission kinetics. The experimental observations were explained using theoretical model accounting for change in the Förster radius caused by the strong energy transfer to metal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA