Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 623(7987): 562-570, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37880372

RESUMEN

Vision enables both image-forming perception, driven by a contrast-based pathway, and unconscious non-image-forming circadian photoentrainment, driven by an irradiance-based pathway1,2. Although two distinct photoreceptor populations are specialized for each visual task3-6, image-forming photoreceptors can additionally contribute to photoentrainment of the circadian clock in different species7-15. However, it is unknown how the image-forming photoreceptor pathway can functionally implement the segregation of irradiance signals required for circadian photoentrainment from contrast signals required for image perception. Here we report that the Drosophila R8 photoreceptor separates image-forming and irradiance signals by co-transmitting two neurotransmitters, histamine and acetylcholine. This segregation is further established postsynaptically by histamine-receptor-expressing unicolumnar retinotopic neurons and acetylcholine-receptor-expressing multicolumnar integration neurons. The acetylcholine transmission from R8 photoreceptors is sustained by an autocrine negative feedback of the cotransmitted histamine during the light phase of light-dark cycles. At the behavioural level, elimination of histamine and acetylcholine transmission impairs R8-driven motion detection and circadian photoentrainment, respectively. Thus, a single type of photoreceptor can achieve the dichotomy of visual perception and circadian photoentrainment as early as the first visual synapses, revealing a simple yet robust mechanism to segregate and translate distinct sensory features into different animal behaviours.


Asunto(s)
Ritmo Circadiano , Drosophila melanogaster , Células Fotorreceptoras de Invertebrados , Percepción Visual , Animales , Acetilcolina/metabolismo , Relojes Biológicos/fisiología , Relojes Biológicos/efectos de la radiación , Ritmo Circadiano/fisiología , Ritmo Circadiano/efectos de la radiación , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Drosophila melanogaster/efectos de la radiación , Retroalimentación Fisiológica , Histamina/metabolismo , Neurotransmisores/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Receptores Colinérgicos/metabolismo , Receptores Histamínicos/metabolismo , Percepción Visual/fisiología , Percepción Visual/efectos de la radiación
2.
Proc Natl Acad Sci U S A ; 116(12): 5721-5726, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30833404

RESUMEN

The Drosophila circadian oscillator relies on a negative transcriptional feedback loop, in which the PERIOD (PER) and TIMELESS (TIM) proteins repress the expression of their own gene by inhibiting the activity of the CLOCK (CLK) and CYCLE (CYC) transcription factors. A series of posttranslational modifications contribute to the oscillations of the PER and TIM proteins but few posttranscriptional mechanisms have been described that affect mRNA stability. Here we report that down-regulation of the POP2 deadenylase, a key component of the CCR4-NOT deadenylation complex, alters behavioral rhythms. Down-regulating POP2 specifically increases TIM protein and tim mRNA but not tim pre-mRNA, supporting a posttranscriptional role. Indeed, reduced POP2 levels induce a lengthening of tim mRNA poly(A) tail. Surprisingly, such effects are lost in per0 mutants, supporting a PER-dependent inhibition of tim mRNA deadenylation by POP2. We report a deadenylation mechanism that controls the oscillations of a core clock gene transcript.


Asunto(s)
Relojes Circadianos/fisiología , Proteínas de Drosophila/fisiología , Proteínas Circadianas Period/fisiología , Factores de Transcripción ARNTL/genética , Animales , Proteínas CLOCK/genética , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Regulación hacia Abajo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Proteínas Circadianas Period/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Ribonucleasas , Transcripción Genética
3.
PLoS Biol ; 16(10): e2006229, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30278045

RESUMEN

Exposure to man-made electromagnetic fields (EMFs), which increasingly pollute our environment, have consequences for human health about which there is continuing ignorance and debate. Whereas there is considerable ongoing concern about their harmful effects, magnetic fields are at the same time being applied as therapeutic tools in regenerative medicine, oncology, orthopedics, and neurology. This paradox cannot be resolved until the cellular mechanisms underlying such effects are identified. Here, we show by biochemical and imaging experiments that exposure of mammalian cells to weak pulsed electromagnetic fields (PEMFs) stimulates rapid accumulation of reactive oxygen species (ROS), a potentially toxic metabolite with multiple roles in stress response and cellular ageing. Following exposure to PEMF, cell growth is slowed, and ROS-responsive genes are induced. These effects require the presence of cryptochrome, a putative magnetosensor that synthesizes ROS. We conclude that modulation of intracellular ROS via cryptochromes represents a general response to weak EMFs, which can account for either therapeutic or pathological effects depending on exposure. Clinically, our findings provide a rationale to optimize low field magnetic stimulation for novel therapeutic applications while warning against the possibility of harmful synergistic effects with environmental agents that further increase intracellular ROS.


Asunto(s)
Campos Electromagnéticos/efectos adversos , Campos Magnéticos/efectos adversos , Animales , Aumento de la Célula , Proliferación Celular , Criptocromos , Drosophila , Células HEK293 , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo
4.
Opt Lett ; 44(10): 2514-2517, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31090720

RESUMEN

We propose an adaptive optics light-sheet fluorescence microscope (AO-LSFM) for closed-loop aberrations' correction at the emission path, providing intrinsic instrumental simplicity and high accuracy when compared to previously reported schemes. The approach is based on direct wavefront sensing, i.e., not on time-consuming iterative algorithms, and does not require the use of any guide star, thus reducing instrumental complexity and/or sample preparation constraints. The design is based on a modified Shack-Hartmann wavefront sensor providing compatibility with extended sources such as images from optical sectioning microscopes. We report an AO-LSFM setup based on such sensors, including characterization of the sensor performance, and demonstrate for the first time to the best of our knowledge a significant contrast improvement on neuronal structures of the ex vivo adult drosophila brain in depth.

5.
PLoS Biol ; 11(8): e1001645, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24013921

RESUMEN

Phosphorylation is a pivotal regulatory mechanism for protein stability and activity in circadian clocks regardless of their evolutionary origin. It determines the speed and strength of molecular oscillations by acting on transcriptional activators and their repressors, which form negative feedback loops. In Drosophila, the CK2 kinase phosphorylates and destabilizes the PERIOD (PER) and TIMELESS (TIM) proteins, which inhibit CLOCK (CLK) transcriptional activity. Here we show that CK2 also targets the CLK activator directly. Downregulating the activity of the catalytic α subunit of CK2 induces CLK degradation, even in the absence of PER and TIM. Unexpectedly, the regulatory ß subunit of the CK2 holoenzyme is not required for the regulation of CLK stability. In addition, downregulation of CK2α activity decreases CLK phosphorylation and increases per and tim transcription. These results indicate that CK2 inhibits CLK degradation while reducing its activity. Since the CK1 kinase promotes CLK degradation, we suggest that CLK stability and transcriptional activity result from counteracting effects of CK1 and CK2.


Asunto(s)
Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Animales , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Drosophila , Proteínas de Drosophila/genética , Fosforilación
7.
PLoS Biol ; 10(8): e1001367, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22879814

RESUMEN

Eukaryotic circadian clocks rely on transcriptional feedback loops. In Drosophila, the PERIOD (PER) and TIMELESS (TIM) proteins accumulate during the night, inhibit the activity of the CLOCK (CLK)/CYCLE (CYC) transcriptional complex, and are degraded in the early morning. The control of PER and TIM oscillations largely depends on post-translational mechanisms. They involve both light-dependent and light-independent pathways that rely on the phosphorylation, ubiquitination, and proteasomal degradation of the clock proteins. SLMB, which is part of a CULLIN-1-based E3 ubiquitin ligase complex, is required for the circadian degradation of phosphorylated PER. We show here that CULLIN-3 (CUL-3) is required for the circadian control of PER and TIM oscillations. Expression of either Cul-3 RNAi or dominant negative forms of CUL-3 in the clock neurons alters locomotor behavior and dampens PER and TIM oscillations in light-dark cycles. In constant conditions, CUL-3 deregulation induces behavioral arrhythmicity and rapidly abolishes TIM cycling, with slower effects on PER. CUL-3 affects TIM accumulation more strongly in the absence of PER and forms protein complexes with hypo-phosphorylated TIM. In contrast, SLMB affects TIM more strongly in the presence of PER and preferentially associates with phosphorylated TIM. CUL-3 and SLMB show additive effects on TIM and PER, suggesting different roles for the two ubiquitination complexes on PER and TIM cycling. This work thus shows that CUL-3 is a new component of the Drosophila clock, which plays an important role in the control of TIM oscillations.


Asunto(s)
Conducta Animal/fisiología , Relojes Circadianos , Proteínas Cullin/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Animales , Western Blotting , Proteínas Cullin/genética , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/genética , Regulación de la Expresión Génica , Locomoción , Complejos Multiproteicos/metabolismo , Neuronas/metabolismo , Proteínas Circadianas Period/metabolismo , Fosforilación , Estabilidad Proteica , Proteolisis , Interferencia de ARN , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Ubiquitinación
8.
Bull Acad Natl Med ; 199(7): 1115-1131, 2015 Oct.
Artículo en Inglés, Francés | MEDLINE | ID: mdl-29879332

RESUMEN

The circadian clock that governs sleep-wake rhythms stems from a small set of genes, called clock genes, that are highly conserved during evolution. In insects as in mammals, a transcriptional feedback loop generates 24 h molecular oscillations. Two major transcrip- tional activators direct the expression of genes encoding repressors the accumulation of which leads afew hours later to transcriptional inhibition. This cyclic transcription is the core of the circadian oscillator and controls a large number of target genes (about 5 % of the genome), the nature of which varies from one organ to another depending on the physiology of the tissues. The period of the molecular oscillations relies on the accumulation rate of the repressors, their transfer into the cell nucleus, their ability to inhibit transcription, and their lifetime. These various parameters are largely based on post-translational regula- tions that depend on genes encoding kinases, phosphatases and ubiquitin ligases for a large fraction of them. Several syndromes that affect the sleep-wake rhythm were characterized in the human population. Inparticula; shifts of the sleep-wake rhythms compared to day-night cycles have been identifed and associated with mutations in clock genes. These mutations disrupt not only the brain clock that governs sleep-wake rhythms but also the temporal organization of many physiological processes (metabolism, detoxification etc.) through the clocks that are present in the different cell types of the body.


Asunto(s)
Proteínas CLOCK/genética , Relojes Circadianos/genética , Drosophila/genética , Evolución Molecular , Animales , Proteínas de Drosophila/genética , Humanos , Luz , Filogenia
9.
EMBO Rep ; 12(6): 549-57, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21525955

RESUMEN

In the Drosophila circadian clock, the CLOCK/CYCLE complex activates the period and timeless genes that negatively feedback on CLOCK/CYCLE activity. The 24-h pace of this cycle depends on the stability of the clock proteins. RING-domain E3 ubiquitin ligases have been shown to destabilize PERIOD or TIMELESS. Here we identify a clock function for the circadian trip (ctrip) gene, which encodes a HECT-domain E3 ubiquitin ligase. ctrip expression in the brain is mostly restricted to clock neurons and its downregulation leads to long-period activity rhythms in constant darkness. This altered behaviour is associated with high CLOCK levels and persistence of phosphorylated PERIOD during the subjective day. The control of CLOCK protein levels does not require PERIOD. Thus, CTRIP seems to regulate the pace of the oscillator by controlling the stability of both the activator and the repressor of the feedback loop.


Asunto(s)
Proteínas CLOCK/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/enzimología , Regulación de la Expresión Génica , Proteínas Circadianas Period/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Relojes Biológicos/genética , Encéfalo/metabolismo , Regulación hacia Abajo , Drosophila/metabolismo , Femenino , Orden Génico , Masculino , Datos de Secuencia Molecular , Actividad Motora/fisiología , Neuronas/metabolismo , Estabilidad Proteica , Interferencia de ARN , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética
11.
J Biomed Opt ; 28(6): 066501, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37334209

RESUMEN

Significance: Adaptive optics (AO) has been implemented on several microscopy setups and has proven its ability to increase both signal and resolution. However, reported configurations are not suited for fast imaging of live samples or are based on an invasive or complex implementation method. Aim: Provide a fast aberration correction method with an easy to implement AO module compatible with light-sheet fluorescence microscopy (LSFM) for enhanced imaging of live samples. Approach: Development of an AO add-on module for LSFM based on direct wavefront sensing without requiring a guide star using an extended-scene Shack-Hartmann wavefront sensor. The enhanced setup uses a two-color sample labeling strategy to optimize the photon budget. Results: Fast AO correction of in-depth aberrations in an ex-vivo adult Drosophila brain enables doubling the contrast when imaging with either cell reporters or calcium sensors for functional imaging. We quantify the gain in terms of image quality on different functional domains of sleep neurons in the Drosophila brain at various depths and discuss the optimization of key parameters driving AO. Conclusion: We developed a compact AO module that can be integrated into most of the reported light-sheet microscopy setups, provides significant improvement of image quality and is compatible with fast imaging requirements such as calcium imaging.


Asunto(s)
Calcio , Drosophila melanogaster , Animales , Microscopía Fluorescente , Drosophila , Neuroimagen , Encéfalo/diagnóstico por imagen
12.
J Neurosci ; 31(48): 17406-15, 2011 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-22131402

RESUMEN

In Drosophila, opsin visual photopigments as well as blue-light-sensitive cryptochrome (CRY) contribute to the synchronization of circadian clocks. We focused on the relatively simple larval brain, with nine clock neurons per hemisphere: five lateral neurons (LNs), four of which express the pigment-dispersing factor (PDF) neuropeptide, and two pairs of dorsal neurons (DN1s and DN2s). CRY is present only in the PDF-expressing LNs and the DN1s. The larval visual organ expresses only two rhodopsins (RH5 and RH6) and projects onto the LNs. We recently showed that PDF signaling is required for light to synchronize the CRY(-) larval DN2s. We now show that, in the absence of functional CRY, synchronization of the DN1s also requires PDF, suggesting that these neurons have no direct connection with the visual system. In contrast, the fifth (PDF(-)) LN does not require the PDF-expressing cells to receive visual system inputs. All clock neurons are light-entrained by light-dark cycles in the rh5(2);cry(b), rh6(1) cry(b), and rh5(2);rh6(1) double mutants, whereas the triple mutant is circadianly blind. Thus, any one of the three photosensitive molecules is sufficient, and there is no other light input for the larval clock. Finally, we show that constant activation of the visual system can suppress molecular oscillations in the four PDF-expressing LNs, whereas, in the adult, this effect of constant light requires CRY. A surprising diversity and specificity of light input combinations thus exists even for this simple clock network.


Asunto(s)
Encéfalo/fisiología , Drosophila/fisiología , Neuronas/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Proteínas CLOCK/genética , Proteínas de Drosophila/genética , Larva/fisiología , Estimulación Luminosa/métodos , Fotoperiodo , Rodopsina/genética
13.
J Neurosci ; 29(26): 8312-20, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19571122

RESUMEN

Circadian clocks synchronize to the solar day by sensing the diurnal changes in light and temperature. In adult Drosophila, the brain clock that controls rest-activity rhythms relies on neurons showing Period oscillations. Nine of these neurons are present in each larval brain hemisphere. They can receive light inputs through Cryptochrome (CRY) and the visual system, but temperature input pathways are unknown. Here, we investigate how the larval clock network responds to light and temperature. We focused on the CRY-negative dorsal neurons (DN2s), in which light-dark (LD) cycles set molecular oscillations almost in antiphase to all other clock neurons. We first showed that the phasing of the DN2s in LD depends on the pigment-dispersing factor (PDF) neuropeptide in four lateral neurons (LNs), and on the PDF receptor in the DN2s. In the absence of PDF signaling, these cells appear blind, but still synchronize to temperature cycles. Period oscillations in the DN2s were stronger in thermocycles than in LD, but with a very similar phase. Conversely, the oscillations of LNs were weaker in thermocycles than in LD, and were phase-shifted in synchrony with the DN2s, whereas the phase of the three other clock neurons was advanced by a few hours. In the absence of any other functional clock neurons, the PDF-positive LNs were entrained by LD cycles but not by temperature cycles. Our results show that the larval clock neurons respond very differently to light and temperature, and strongly suggest that the CRY-negative DN2s play a prominent role in the temperature entrainment of the network.


Asunto(s)
Encéfalo/citología , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Luz , Neuronas/fisiología , Neuropéptidos/metabolismo , Temperatura , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Conducta Animal , Relojes Biológicos/fisiología , Encéfalo/fisiología , Criptocromos , Proteínas de Drosophila/genética , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas Fluorescentes Verdes/genética , Larva , Neuropéptidos/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Factores de Tiempo
14.
PLoS Biol ; 5(11): e315, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18044989

RESUMEN

Animal circadian clocks are based on multiple oscillators whose interactions allow the daily control of complex behaviors. The Drosophila brain contains a circadian clock that controls rest-activity rhythms and relies upon different groups of PERIOD (PER)-expressing neurons. Two distinct oscillators have been functionally characterized under light-dark cycles. Lateral neurons (LNs) that express the pigment-dispersing factor (PDF) drive morning activity, whereas PDF-negative LNs are required for the evening activity. In constant darkness, several lines of evidence indicate that the LN morning oscillator (LN-MO) drives the activity rhythms, whereas the LN evening oscillator (LN-EO) does not. Since mutants devoid of functional CRYPTOCHROME (CRY), as opposed to wild-type flies, are rhythmic in constant light, we analyzed transgenic flies expressing PER or CRY in the LN-MO or LN-EO. We show that, under constant light conditions and reduced CRY function, the LN evening oscillator drives robust activity rhythms, whereas the LN morning oscillator does not. Remarkably, light acts by inhibiting the LN-MO behavioral output and activating the LN-EO behavioral output. Finally, we show that PDF signaling is not required for robust activity rhythms in constant light as opposed to its requirement in constant darkness, further supporting the minor contribution of the morning cells to the behavior in the presence of light. We therefore propose that day-night cycles alternatively activate behavioral outputs of the Drosophila evening and morning lateral neurons.


Asunto(s)
Relojes Biológicos/fisiología , Encéfalo/citología , Ritmo Circadiano/fisiología , Drosophila/fisiología , Neuronas/citología , Fotoperiodo , Animales , Conducta Animal , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expresión Génica , Genotipo , Luz , Actividad Motora/fisiología , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Organismos Modificados Genéticamente , Proteínas Circadianas Period , Transducción de Señal
15.
Nature ; 431(7010): 869-73, 2004 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-15483616

RESUMEN

In Drosophila, a 'clock' situated in the brain controls circadian rhythms of locomotor activity. This clock relies on several groups of neurons that express the Period (PER) protein, including the ventral lateral neurons (LN(v)s), which express the Pigment-dispersing factor (PDF) neuropeptide, and the PDF-negative dorsal lateral neurons (LN(d)s). In normal cycles of day and night, adult flies exhibit morning and evening peaks of activity; however, the contribution of the different clock neurons to the rest-activity pattern remains unknown. Here, we have used targeted expression of PER to restore the clock function of specific subsets of lateral neurons in arrhythmic per(0) mutant flies. We show that PER expression restricted to the LN(v)s only restores the morning activity, whereas expression of PER in both the LN(v)s and LN(d)s also restores the evening activity. This provides the first neuronal bases for 'morning' and 'evening' oscillators in the Drosophila brain. Furthermore, we show that the LN(v)s alone can generate 24 h activity rhythms in constant darkness, indicating that the morning oscillator is sufficient to drive the circadian system.


Asunto(s)
Relojes Biológicos/fisiología , Encéfalo/citología , Encéfalo/fisiología , Ritmo Circadiano/fisiología , Drosophila melanogaster/fisiología , Actividad Motora/fisiología , Neuronas/fisiología , Animales , Conducta Animal/fisiología , Conducta Animal/efectos de la radiación , Relojes Biológicos/genética , Relojes Biológicos/efectos de la radiación , Encéfalo/efectos de la radiación , Ritmo Circadiano/genética , Ritmo Circadiano/efectos de la radiación , Oscuridad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/efectos de la radiación , Expresión Génica , Luz , Actividad Motora/genética , Actividad Motora/efectos de la radiación , Neuronas/efectos de la radiación , Neuropéptidos/genética , Neuropéptidos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period
16.
J Biol Rhythms ; 24(4): 271-82, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19625729

RESUMEN

The clock gene expressing lateral neurons (LN) is crucial for Drosophila 's rhythmic locomotor activity under constant conditions. Among the LN, the PDF expressing small ventral lateral neurons (s-LN(v)) are thought to control the morning activity of the fly (M oscillators) and to drive rhythmic activity under constant darkness. In contrast, a 5th PDF-negative s-LN( v) and the dorsal lateral neurons (LN(d)) appeared to control the fly's evening activity (E oscillators) and to drive rhythmic activity under constant light. Here, the authors restricted period gene expression to 4 LN-the 5th s-LN(v) and 3 LN(d)- that are all thought to belong to the E oscillators and tested them in low light conditions. Interestingly, such flies showed rather normal bimodal activity patterns under light moonlight and constant moonlight conditions, except that the phase of M and E peaks was different. This suggests that these 4 neurons behave as ''M'' and ''E'' cells in these conditions. Indeed, they found by PER and TIM immunohistochemistry that 2 LN(d) advanced their phase upon moonlight as predicted for M oscillators, whereas the 5th s-LN(v) and 1 LN(d) delayed their activity upon moonlight as predicted for E oscillators. Their results suggest that the M or E characteristic of clock neurons is rather flexible. M and E oscillator function may not be restricted to certain anatomically defined groups of clock neurons but instead depends on the environmental conditions.


Asunto(s)
Relojes Biológicos/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Neuronas/metabolismo , Proteínas Nucleares/fisiología , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/metabolismo , Ritmo Circadiano/fisiología , Oscuridad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Luz , Masculino , Modelos Biológicos , Actividad Motora/fisiología , Actividad Motora/efectos de la radiación , Mutación , Neuronas/citología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Fotoperiodo
17.
Curr Biol ; 30(15): R890-R893, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32750352

RESUMEN

Key Drosophila clock neurons remodel their axonal arborization on a daily basis. The current view is that remodelling is part of the control of clock neuron output but new data support a major role in modulating sensory inputs.


Asunto(s)
Relojes Circadianos , Proteínas de Drosophila , Animales , Ritmo Circadiano , Drosophila , Proteínas de Drosophila/genética , Neuronas
19.
J Biol Rhythms ; 23(2): 103-16, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18375860

RESUMEN

The Drosophila clock relies on transcriptional feedback loops that generate daily oscillations of the clock gene expression at mRNA and protein levels. In the evening, the CLOCK (CLK) and CYCLE (CYC) basic helix-loop-helix (bHLH) PAS-domain transcription factors activate the expression of the period (per) and timeless (tim) genes. Posttranslational modifications delay the accumulation of PER and TIM, which inhibit CLK/CYC activity in the late night. We show here that a null mutant of the clockwork orange (cwo) gene encoding a bHLH orange-domain putative transcription factor displays long-period activity rhythms. cwo loss of function increases cwo mRNA levels but reduces mRNA peak levels of the 4 described CLK/CYC targets, inducing an almost complete loss of their cycling. In addition, the absence of CWO induces alterations of PER and CLK phosphorylation cycles. Our results indicate that, in vivo, CWO modulates clock gene expression through both repressor and activator transcriptional functions.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Regulación de la Expresión Génica , Proteínas Represoras/metabolismo , Factores de Transcripción , Factores de Transcripción ARNTL , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Relojes Biológicos/fisiología , Proteínas CLOCK , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Femenino , Masculino , Datos de Secuencia Molecular , Actividad Motora/fisiología , Mutagénesis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Proteínas Represoras/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
20.
Nat Commun ; 10(1): 252, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30651542

RESUMEN

In Drosophila, the clock that controls rest-activity rhythms synchronizes with light-dark cycles through either the blue-light sensitive cryptochrome (Cry) located in most clock neurons, or rhodopsin-expressing histaminergic photoreceptors. Here we show that, in the absence of Cry, each of the two histamine receptors Ort and HisCl1 contribute to entrain the clock whereas no entrainment occurs in the absence of the two receptors. In contrast to Ort, HisCl1 does not restore entrainment when expressed in the optic lobe interneurons. Indeed, HisCl1 is expressed in wild-type photoreceptors and entrainment is strongly impaired in flies with photoreceptors mutant for HisCl1. Rescuing HisCl1 expression in the Rh6-expressing photoreceptors restores entrainment but it does not in other photoreceptors, which send histaminergic inputs to Rh6-expressing photoreceptors. Our results thus show that Rh6-expressing neurons contribute to circadian entrainment as both photoreceptors and interneurons, recalling the dual function of melanopsin-expressing ganglion cells in the mammalian retina.


Asunto(s)
Canales de Cloruro/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Células Fotorreceptoras de Invertebrados/metabolismo , Rodopsina/metabolismo , Animales , Animales Modificados Genéticamente , Técnicas de Observación Conductual/instrumentación , Técnicas de Observación Conductual/métodos , Conducta Animal/fisiología , Canales de Cloruro/genética , Ojo Compuesto de los Artrópodos/citología , Ojo Compuesto de los Artrópodos/fisiología , Criptocromos/metabolismo , Proteínas de Drosophila/genética , Interneuronas/metabolismo , Masculino , Mutación , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Fotoperiodo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA