Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nanotechnology ; 31(13): 134005, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31810073

RESUMEN

Combining abiotic photosensitisers such as quantum dots (QDs) with non-photosynthetic bacteria presents an intriguing concept into the design of artificial photosynthetic organisms and solar-driven fuel production. Shewanella oneidensis MR-1 (MR-1) is a versatile bacterium concerning respiration, metabolism and biocatalysis, and is a promising organism for artificial photosynthesis as the bacterium's synthetic and catalytic ability provides a potential system for bacterial biohydrogen production. MR-1's hydrogenases are present in the periplasmatic space. It follows that for photoenergised electrons to reach these enzymes, QDs will need to be able to enter the periplasm, or electrons need to enter the periplasm via the Mtr pathway that is responsible for MR-1's extracellular electron transfer ability. As a step towards this goal, various QDs were tested for their photo-reducing potential, nanotoxicology and further for their interaction with MR-1. CdTe/CdS/TGA, CdTe/CdS/Cysteamine, a commercial, negatively charged CdTe and CuInS2/ZnS/PMAL QDs were examined. The photoreduction potential of the QDs was confirmed by measuring their ability to photoreduce methyl viologen with different sacrificial electron donors. The commercial CdTe and CuInS2/ZnS/PMAL QDs showed no toxicity towards MR-1 as evaluated by a colony-forming units method and a fluorescence viability assay. Only the commercial negatively charged CdTe QDs showed good interaction with MR-1. With transmission electron microscopy, QDs were observed both in the cytoplasm and periplasm. These results inform on the possibilities and bottlenecks when developing bionanotechnological systems for the photosynthetic production of biohydrogen by MR-1.


Asunto(s)
Antibacterianos/toxicidad , Hidrogenasas/antagonistas & inhibidores , Puntos Cuánticos/toxicidad , Shewanella/enzimología , Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Compuestos de Cadmio/química , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Transmisión , Periplasma/efectos de los fármacos , Periplasma/enzimología , Fotosíntesis/efectos de los fármacos , Puntos Cuánticos/química , Shewanella/efectos de los fármacos , Telurio/química , Compuestos de Zinc/química
2.
J Biol Chem ; 291(48): 24804-24818, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27694441

RESUMEN

The enzymes of the thiosulfate dehydrogenase (TsdA) family are wide-spread diheme c-type cytochromes. Here, redox carriers were studied mediating the flow of electrons arising from thiosulfate oxidation into respiratory or photosynthetic electron chains. In a number of organisms, including Thiomonas intermedia and Sideroxydans lithotrophicus, the tsdA gene is immediately preceded by tsdB encoding for another diheme cytochrome. Spectrophotometric experiments in combination with enzymatic assays in solution showed that TsdB acts as an effective electron acceptor of TsdA in vitro when TsdA and TsdB originate from the same source organism. Although TsdA covers a range from -300 to +150 mV, TsdB is redox active between -100 and +300 mV, thus enabling electron transfer between these hemoproteins. The three-dimensional structure of the TsdB-TsdA fusion protein from the purple sulfur bacterium Marichromatium purpuratum was solved by X-ray crystallography to 2.75 Å resolution providing insights into internal electron transfer. In the oxidized state, this tetraheme cytochrome c contains three hemes with axial His/Met ligation, whereas heme 3 exhibits the His/Cys coordination typical for TsdA active sites. Interestingly, thiosulfate is covalently bound to Cys330 on heme 3. In several bacteria, including Allochromatium vinosum, TsdB is not present, precluding a general and essential role for electron flow. Both AvTsdA and the MpTsdBA fusion react efficiently in vitro with high potential iron-sulfur protein from A. vinosum (Em +350 mV). High potential iron-sulfur protein not only acts as direct electron donor to the reaction center in anoxygenic phototrophs but can also be involved in aerobic respiratory chains.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Oxidorreductasas/química , Bacterias/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Oxidorreductasas/genética
3.
Chem Commun (Camb) ; 52(46): 7390-3, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27193068

RESUMEN

The decahaem cytochrome MtrC from Shewanella oneidensis MR-1 was employed as a protein electron conduit between a porous indium tin oxide electrode and redox enzymes. Using a hydrogenase and a fumarate reductase, MtrC was shown as a suitable and efficient diode to shuttle electrons to and from the electrode with the MtrC redox activity regulating the direction of the enzymatic reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA