Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 79(2): 342-358.e12, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32645368

RESUMEN

Short linear motifs (SLiMs) drive dynamic protein-protein interactions essential for signaling, but sequence degeneracy and low binding affinities make them difficult to identify. We harnessed unbiased systematic approaches for SLiM discovery to elucidate the regulatory network of calcineurin (CN)/PP2B, the Ca2+-activated phosphatase that recognizes LxVP and PxIxIT motifs. In vitro proteome-wide detection of CN-binding peptides, in vivo SLiM-dependent proximity labeling, and in silico modeling of motif determinants uncovered unanticipated CN interactors, including NOTCH1, which we establish as a CN substrate. Unexpectedly, CN shows SLiM-dependent proximity to centrosomal and nuclear pore complex (NPC) proteins-structures where Ca2+ signaling is largely uncharacterized. CN dephosphorylates human and yeast NPC proteins and promotes accumulation of a nuclear transport reporter, suggesting conserved NPC regulation by CN. The CN network assembled here provides a resource to investigate Ca2+ and CN signaling and demonstrates synergy between experimental and computational methods, establishing a blueprint for examining SLiM-based networks.


Asunto(s)
Calcineurina/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Biotinilación , Centrosoma/metabolismo , Simulación por Computador , Células HEK293 , Células HeLa , Humanos , Espectrometría de Masas , Monoéster Fosfórico Hidrolasas/química , Fosforilación , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Receptor Notch1/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
2.
Nature ; 582(7811): 271-276, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32499640

RESUMEN

A major factor in the progression to heart failure in humans is the inability of the adult heart to repair itself after injury. We recently demonstrated that the early postnatal mammalian heart is capable of regeneration following injury through proliferation of preexisting cardiomyocytes1,2 and that Meis1, a three amino acid loop extension (TALE) family homeodomain transcription factor, translocates to cardiomyocyte nuclei shortly after birth and mediates postnatal cell cycle arrest3. Here we report that Hoxb13 acts as a cofactor of Meis1 in postnatal cardiomyocytes. Cardiomyocyte-specific deletion of Hoxb13 can extend the postnatal window of cardiomyocyte proliferation and reactivate the cardiomyocyte cell cycle in the adult heart. Moreover, adult Meis1-Hoxb13 double-knockout hearts display widespread cardiomyocyte mitosis, sarcomere disassembly and improved left ventricular systolic function following myocardial infarction, as demonstrated by echocardiography and magnetic resonance imaging. Chromatin immunoprecipitation with sequencing demonstrates that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and cell cycle. Finally, we show that the calcium-activated protein phosphatase calcineurin dephosphorylates Hoxb13 at serine-204, resulting in its nuclear localization and cell cycle arrest. These results demonstrate that Meis1 and Hoxb13 act cooperatively to regulate cardiomyocyte maturation and proliferation and provide mechanistic insights into the link between hyperplastic and hypertrophic growth of cardiomyocytes.


Asunto(s)
Calcineurina/metabolismo , Proliferación Celular , Proteínas de Homeodominio/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/metabolismo , Miocitos Cardíacos/citología , Animales , Animales Recién Nacidos , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Corazón/fisiología , Proteínas de Homeodominio/genética , Masculino , Ratones , Miocardio/citología , Unión Proteica , Regeneración
3.
Mol Cell ; 55(3): 422-435, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24930733

RESUMEN

To define a functional network for calcineurin, the conserved Ca(2+)/calmodulin-regulated phosphatase, we systematically identified its substrates in S. cerevisiae using phosphoproteomics and bioinformatics, followed by copurification and dephosphorylation assays. This study establishes new calcineurin functions and reveals mechanisms that shape calcineurin network evolution. Analyses of closely related yeasts show that many proteins were recently recruited to the network by acquiring a calcineurin-recognition motif. Calcineurin substrates in yeast and mammals are distinct due to network rewiring but, surprisingly, are phosphorylated by similar kinases. We postulate that corecognition of conserved substrate features, including phosphorylation and docking motifs, preserves calcineurin-kinase opposition during evolution. One example we document is a composite docking site that confers substrate recognition by both calcineurin and MAPK. We propose that conserved kinase-phosphatase pairs define the architecture of signaling networks and allow other connections between kinases and phosphatases to develop that establish common regulatory motifs in signaling networks.


Asunto(s)
Calcineurina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión/fisiología , Calcineurina/química , Calcineurina/genética , Secuencia Conservada , Evolución Molecular , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Fosforilación , Filogenia , Proteómica , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Especificidad por Sustrato
4.
Mol Cell ; 33(5): 616-26, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19285944

RESUMEN

The phosphatase calcineurin, a target of the immunosuppressants cyclosporin A and FK506, dephosphorylates NFAT transcription factors to promote immune activation and development of the vascular and nervous systems. NFAT interacts with calcineurin through distinct binding motifs: the PxIxIT and LxVP sites. Although many calcineurin substrates contain PxIxIT motifs, the generality of LxVP-mediated interactions is unclear. We define critical residues in the LxVP motif, and we demonstrate its binding to a hydrophobic pocket at the interface of the two calcineurin subunits. Mutations in this region disrupt binding of mammalian calcineurin to NFATC1 and the interaction of yeast calcineurin with substrates including Rcn1, which contains an LxVP motif. These mutations also interfere with calcineurin-immunosuppressant binding, and an LxVP-based peptide competes with immunosuppressant-immunophilin complexes for binding to calcineurin. These studies suggest that LxVP-type sites are a common feature of calcineurin substrates, and that immunosuppressant-immunophilin complexes inhibit calcineurin by interfering with this mode of substrate recognition.


Asunto(s)
Calcineurina/metabolismo , Inmunosupresores/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calcineurina/química , Calcineurina/genética , Inhibidores de la Calcineurina , Clonación Molecular , Simulación por Computador , Secuencia Conservada , Genes Reporteros , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Inmunofilinas/metabolismo , Inmunosupresores/farmacología , Péptidos y Proteínas de Señalización Intracelular , Células Jurkat , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Factores de Transcripción NFATC/metabolismo , Péptidos/metabolismo , Conformación Proteica , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Propiedades de Superficie , Proteína 1A de Unión a Tacrolimus/metabolismo , Transcripción Genética , Transfección
5.
Nat Commun ; 12(1): 6064, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663815

RESUMEN

Calcineurin, the conserved protein phosphatase and target of immunosuppressants, is a critical mediator of Ca2+ signaling. Here, to discover calcineurin-regulated processes we examined an understudied isoform, CNAß1. We show that unlike canonical cytosolic calcineurin, CNAß1 localizes to the plasma membrane and Golgi due to palmitoylation of its divergent C-terminal tail, which is reversed by the ABHD17A depalmitoylase. Palmitoylation targets CNAß1 to a distinct set of membrane-associated interactors including the phosphatidylinositol 4-kinase (PI4KA) complex containing EFR3B, PI4KA, TTC7B and FAM126A. Hydrogen-deuterium exchange reveals multiple calcineurin-PI4KA complex contacts, including a calcineurin-binding peptide motif in the disordered tail of FAM126A, which we establish as a calcineurin substrate. Calcineurin inhibitors decrease PI4P production during Gq-coupled GPCR signaling, suggesting that calcineurin dephosphorylates and promotes PI4KA complex activity. In sum, this work discovers a calcineurin-regulated signaling pathway which highlights the PI4KA complex as a regulatory target and reveals that dynamic palmitoylation confers unique localization, substrate specificity and regulation to CNAß1.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Membrana Celular/metabolismo , Lipoilación/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Calcineurina/metabolismo , Línea Celular , Citoplasma/metabolismo , Aparato de Golgi/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo , Transducción de Señal/fisiología
6.
Curr Biol ; 30(22): R1382-R1385, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33202241

RESUMEN

A new study uses an elegant in vivo assay to comprehensively characterize the LP docking motif, which determines G1-CDK substrate specificity in fungi. The authors show that LP-cyclin docking strength determines the timing of Sic1 degradation, a key cell cycle event.


Asunto(s)
Ciclinas , Proteínas de Saccharomyces cerevisiae , Ciclinas/metabolismo , Fosforilación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
7.
Artículo en Inglés | MEDLINE | ID: mdl-31308145

RESUMEN

Biological processes are dynamically regulated by signaling networks composed of protein kinases and phosphatases. Calcineurin, or PP3, is a conserved phosphoserine/phosphothreonine-specific protein phosphatase and member of the PPP family of phosphatases. Calcineurin is unique, however, in its activation by Ca2+ and calmodulin. This ubiquitously expressed phosphatase controls Ca2+-dependent processes in all human tissues, but is best known for driving the adaptive immune response by dephosphorylating the nuclear factor of the activated T-cells (NFAT) family of transcription factors. Therefore, calcineurin inhibitors, FK506 (tacrolimus), and cyclosporin A serve as immunosuppressants. We describe some of the adverse effects associated with calcineurin inhibitors that result from inhibition of calcineurin in nonimmune tissues, illustrating the many functions of this enzyme that have yet to be elucidated. In fact, calcineurin has essential roles beyond the immune system, from yeast to humans, but since its discovery more than 30 years ago, only a small number of direct calcineurin substrates have been shown (∼75 proteins). This is because of limitations in current methods for identification of phosphatase substrates. Here we discuss recent insights into mechanisms of calcineurin activation and substrate recognition that have been critical in the development of novel approaches for identifying its targets systematically. Rather than comprehensively reviewing known functions of calcineurin, we highlight new approaches to substrate identification for this critical regulator that may reveal molecular mechanisms underlying toxicities caused by calcineurin inhibitor-based immunosuppression.


Asunto(s)
Inhibidores de la Calcineurina/química , Calcineurina/metabolismo , Calcio/metabolismo , Ciclosporina/metabolismo , Regulación de la Expresión Génica , Factores de Transcripción NFATC/metabolismo , Secuencias de Aminoácidos , Animales , Calcineurina/química , Simulación por Computador , Humanos , Hipertensión/terapia , Sistema Inmunológico , Terapia de Inmunosupresión , Inmunosupresores , Isoenzimas/química , Proteínas Nucleares/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Conformación Proteica , Isoformas de Proteínas , Proteómica/métodos , Transducción de Señal , Tacrolimus/farmacología
8.
Elife ; 82019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31282865

RESUMEN

Transient, regulated binding of globular protein domains to Short Linear Motifs (SLiMs) in disordered regions of other proteins drives cellular signaling. Mapping the energy landscapes of these interactions is essential for deciphering and perturbing signaling networks but is challenging due to their weak affinities. We present a powerful technology (MRBLE-pep) that simultaneously quantifies protein binding to a library of peptides directly synthesized on beads containing unique spectral codes. Using MRBLE-pep, we systematically probe binding of calcineurin (CN), a conserved protein phosphatase essential for the immune response and target of immunosuppressants, to the PxIxIT SLiM. We discover that flanking residues and post-translational modifications critically contribute to PxIxIT-CN affinity and identify CN-binding peptides based on multiple scaffolds with a wide range of affinities. The quantitative biophysical data provided by this approach will improve computational modeling efforts, elucidate a broad range of weak protein-SLiM interactions, and revolutionize our understanding of signaling networks.


Asunto(s)
Hidrogeles/química , Microesferas , Biblioteca de Péptidos , Péptidos/metabolismo , Proteínas/metabolismo , Algoritmos , Secuencia de Aminoácidos , Unión Competitiva , Calcineurina/metabolismo , Humanos , Modelos Teóricos , Fosfoproteínas Fosfatasas/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional
9.
Mol Biol Cell ; 26(20): 3570-7, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26269584

RESUMEN

Cyclin-dependent kinase (Cdk1) orchestrates progression through the cell cycle by coordinating the activities of cell-cycle regulators. Although phosphatases that oppose Cdk1 are likely to be necessary to establish dynamic phosphorylation, specific phosphatases that target most Cdk1 substrates have not been identified. In budding yeast, the transcription factor Hcm1 activates expression of genes that regulate chromosome segregation and is critical for maintaining genome stability. Previously we found that Hcm1 activity and degradation are stimulated by Cdk1 phosphorylation of distinct clusters of sites. Here we show that, upon exposure to environmental stress, the phosphatase calcineurin inhibits Hcm1 by specifically removing activating phosphorylations and that this regulation is important for cells to delay proliferation when they encounter stress. Our work identifies a mechanism by which proliferative signals from Cdk1 are removed in response to stress and suggests that Hcm1 functions as a rheostat that integrates stimulatory and inhibitory signals to control cell proliferation.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Calcineurina/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proliferación Celular/fisiología , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Saccharomycetales/citología , Saccharomycetales/metabolismo , Estrés Fisiológico/fisiología , Factores de Transcripción/metabolismo
10.
Sci Signal ; 2(100): re9, 2009 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-19996458

RESUMEN

Phosphoserine- and phosphothreonine-directed phosphatases display remarkable substrate specificity, yet the sites that they dephosphorylate show little similarity in amino acid sequence. Studies reveal that docking interactions are key for the recognition of substrates and regulators by two conserved phosphatases, protein phosphatase 1 (PP1) and the Ca2+-calmodulin-dependent phosphatase calcineurin. In each case, a small degenerate sequence motif in the interacting protein directs low-affinity binding to a docking surface on the phosphatase that is distinct from the active site; several such interactions combine to confer overall binding specificity. Some docking surfaces are conserved, such as a hydrophobic groove on a face opposite the active site that serves as a major recognition surface for the "RVxF" motif of proteins that interact with PP1 and the "PxIxIT" motif of substrates of calcineurin. Secondary motifs combine with this primary targeting sequence to specify phosphatase binding. A comprehensive interactome for mammalian PP1 was described, analysis of which defines several PP1-binding motifs. Studies of "LxVP," a secondary calcineurin-binding sequence, establish that this motif is a conserved feature of calcineurin substrates and that the immunosuppressants FK506 and cyclosporin A inhibit the phosphatase by interfering with LxVP-mediated docking.


Asunto(s)
Monoéster Fosfórico Hidrolasas/metabolismo , Secuencias de Aminoácidos , Modelos Moleculares , Monoéster Fosfórico Hidrolasas/química , Especificidad por Sustrato
11.
Mol Cell ; 25(6): 889-901, 2007 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-17386265

RESUMEN

Calcineurin, the conserved Ca(2+)/calmodulin-regulated protein phosphatase, mediates diverse aspects of Ca(2+)-dependent signaling. We show that substrates bind calcineurin with varying strengths and examine the impact of this affinity on signaling. We altered the calcineurin-docking site, or PxIxIT motif, in Crz1, the calcineurin-regulated transcription factor in S. cerevisiae, to decrease (Crz1(PVIAVN)) or increase (Crz1(PVIVIT)) its affinity for calcineurin. As a result, the Ca(2+)-dependent dephosphorylation and activation of Crz1(PVIAVN) are decreased, whereas Crz1(PVIVIT) is constitutively dephosphorylated and hyperactive. Surprisingly, the physiological consequences of altering calcineurin-Crz1 affinity depend on the growth conditions. Crz1(PVIVIT) improves yeast growth under several environmental stress conditions but causes a growth defect during alkaline stress, most likely by titrating calcineurin away from other substrates or regulators. Thus, calcineurin-substrate affinity determines the Ca(2+) concentration dependence and output of signaling in vivo as well as the balance between different branches of calcineurin signaling in an overall biological response.


Asunto(s)
Calcineurina/fisiología , Sitios de Unión , Calcineurina/química , Calcineurina/metabolismo , Secuencia Conservada , Proteínas de Unión al ADN , Cinética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Especificidad por Sustrato , Transactivadores/química , Transactivadores/metabolismo , Factores de Transcripción , Dedos de Zinc
12.
Genes Dev ; 17(14): 1779-88, 2003 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12832393

RESUMEN

Telomerase contains an essential RNA, which includes the template sequence copied by the reverse transcription action of telomerase into telomeric DNA. Using phylogenetic comparison, we identified seven conserved sequences in telomerase RNAs from Kluyveromyces budding yeasts. We show that two of these sequences, CS3 and CS4, are essential for normal telomerase function and can base-pair to form a putative long-range pseudoknot. Disrupting this base-pairing was deleterious to cell growth, telomere maintenance, and telomerase activity. Restoration of the base-pairing potential alleviated these phenotypes. Mutating this pseudoknot caused a novel mode of shifting of the boundaries of the RNA template sequence copied by telomerase. A phylogenetically derived model of yeast TER structure indicates that these RNAs can form two alternative predicted core conformations of similar stability: one brings the CS3/CS4 pseudoknot spatially close to the template; in the other, CS3 and CS4 move apart and the conformation of the template is altered. We propose that such disruption of the pseudoknot, and potentially the predicted telomerase RNA conformation, affects polymerization to cause the observed shifts in template usage.


Asunto(s)
Kluyveromyces/enzimología , Telomerasa/química , Emparejamiento Base , Secuencia de Bases , Secuencia Conservada , Datos de Secuencia Molecular , Mutación , Conformación de Ácido Nucleico , Filogenia , Análisis de Secuencia de ARN , Telomerasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA