Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Compr Rev Food Sci Food Saf ; 23(4): e13410, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39030812

RESUMEN

Given the growing global demand for seafood, it is imperative to conduct a comprehensive study on the prevalence and persistence patterns of pathogenic bacteria and viruses associated with specific seafood varieties. This assessment thoroughly examines the safety of seafood products, considering the diverse processing methods employed in the industry. The importance of understanding the behavior of foodborne pathogens, such as Salmonella typhimurium, Vibrio parahaemolyticus, Clostridium botulinum, Listeria monocytogenes, human norovirus, and hepatitis A virus, is emphasized by recent cases of gastroenteritis outbreaks linked to contaminated seafood. This analysis examines outbreaks linked to seafood in the United States and globally, with a particular emphasis on the health concerns posed by pathogenic bacteria and viruses to consumers. Ensuring the safety of seafood is crucial since it directly relates to consumer preferences on sustainability, food safety, provenance, and availability. The review focuses on assessing the frequency, growth, and durability of infections that arise during the processing of seafood. It utilizes next-generation sequencing to identify the bacteria responsible for these illnesses. Additionally, it analyzes methods for preventing and intervening of infections while also considering the forthcoming challenges in ensuring the microbiological safety of seafood products. This evaluation emphasizes the significance of the seafood processing industry in promptly responding to evolving consumer preferences by offering current information on seafood hazards and future consumption patterns. To ensure the continuous safety and sustainable future of seafood products, it is crucial to identify and address possible threats.


Asunto(s)
Bacterias , Microbiología de Alimentos , Alimentos Marinos , Virus , Alimentos Marinos/microbiología , Bacterias/aislamiento & purificación , Virus/aislamiento & purificación , Humanos , Inocuidad de los Alimentos , Contaminación de Alimentos/análisis , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/prevención & control , Enfermedades Transmitidas por los Alimentos/virología , Animales , Manipulación de Alimentos/métodos
2.
Biofouling ; 39(6): 617-628, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37580896

RESUMEN

Salmonella is a food-borne microorganism that is also a zoonotic bacterial hazard in the food sector. This study determined how well a mixed culture of Salmonella Kentucky formed biofilms on plastic (PLA), silicon rubber (SR), rubber gloves (RG), chicken skin and eggshell surfaces. In vitro interactions between the histone deacetylase inhibitor-vorinostat (SAHA)-and S. enterica serotype Kentucky were examined utilizing biofilms. The minimum inhibitory concentration (MIC) of SAHA was 120 µg mL-1. The addition of sub-MIC (60 µg mL-1) of SAHA decreased biofilm formation for 24 h on PLA, SR, RG, Chicken skin, and eggshell by 3.98, 3.84, 4.11, 2.86 and 3.01 log (p < 0.05), respectively. In addition, the initial rate of bacterial biofilm formation was higher on chicken skin than on other surfaces, but the inhibitory effect was reduced. Consistent with this conclusion, virulence genes expression (avrA, rpoS and hilA) and quorum-sensing (QS) gene (luxS) was considerably downregulated at sub-MIC of SAHA. SAHA has potential as an anti-biofilm agent against S. enterica serotype Kentucky biofilm, mostly by inhibiting virulence and quorum-sensing gene expression, proving the histone deacetylase inhibitor could be used to control food-borne biofilms in the food industry.


Asunto(s)
Biopelículas , Salmonella enterica , Salmonella enterica/genética , Vorinostat/farmacología , Virulencia , Serogrupo , Inhibidores de Histona Desacetilasas/farmacología , Kentucky , Goma , Percepción de Quorum , Poliésteres/farmacología
3.
Zygote ; 30(1): 103-110, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34176529

RESUMEN

This study was performed to improve production efficiency at the level of recipient pig and donor nuclei of transgenic cloned pigs used for xenotransplantation. To generate transgenic pigs, human endothelial protein C receptor (hEPCR) and human thrombomodulin (hTM) genes were introduced using the F2A expression vector into GalT-/-/hCD55+ porcine neonatal ear fibroblasts used as donor cells and cloned embryos were transferred to the sows and gilts. Cloned fetal kidney cells were also used as donor cells for recloning to increase production efficiency. Pregnancy and parturition rates after embryo transfer and preimplantation developmental competence were compared between cloned embryos derived from adult and fetal cells. Significantly higher parturition rates were shown in the group of sows (50.0 vs. 4.1%), natural oestrus (20.8 vs. 0%), and ovulated ovary (16.7 vs. 5.6%) compared with gilt, induced and non-ovulated, respectively (P < 0.05). When using gilts as recipients, final parturitions occurred in only the fetal cell groups and significantly higher blastocyst rates (15.1% vs. 21.3%) were seen (P < 0.05). Additionally, gene expression levels related to pluripotency were significantly higher in the fetal cell group (P < 0.05). In conclusion, sows can be recommended as recipients due to their higher efficiency in the generation of transgenic cloned pigs and cloned fetal cells also can be recommended as donor cells through correct nuclear reprogramming.


Asunto(s)
Clonación de Organismos , Técnicas de Transferencia Nuclear , Animales , Animales Modificados Genéticamente , Blastocisto , Femenino , Fibroblastos , Embarazo , Sus scrofa , Porcinos
4.
Trends Food Sci Technol ; 109: 25-36, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33456205

RESUMEN

BACKGROUND: The COVID-19 pandemic that emerged in 2019 has imposed huge consequences, including economic losses and threats to human health, which are still affecting many aspects throughout the world. SCOPE AND APPROACH: This review provides an overview of SARS-CoV-2 infection, the cause of COVID-19, and explores its impact on the food supply system and food safety. This review examines the potential risk of transmission through food and environmental surfaces before discussing an effective inactivation strategy to control the COVID-19 pandemic in the aspect of food safety. This article also suggests effective food safety management post-COVID-19. KEY FINDINGS AND CONCLUSIONS: Respiratory viruses including SARS-CoV-2 are responsible for huge impacts on the global economy and human health. Although food and water are not currently considered priority transmission routes of SARS-CoV-2, infection through contaminated food and environmental surfaces where the virus can persist for several days cannot be ignored, particularly when the surrounding environment is unhygienic. This approach could help determine the exact transmission route of SARS-CoV-2 and prepare for the post-COVID-19 era in the food safety sector.

5.
J Dairy Sci ; 104(6): 6516-6534, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33741164

RESUMEN

Listeria monocytogenes is a major foodborne pathogen that adversely affects the food industry. In this study, 6 anti-listerial lactic acid bacteria (LAB) isolates were screened. These anti-listerial LAB isolates were identified via 16S rRNA gene sequencing and analyzed via repetitive extragenic palindromic-PCR. Probiotic assessment of these isolates, comprising an evaluation of the antibiotic susceptibility, tolerance to lysozyme, simulated gastric and intestinal juices, and gut conditions (low pH, bile salts, and 0.4% phenol), was carried out. Most of the isolates were resistant to streptomycin, vancomycin, gentamycin, kanamycin, and ciprofloxacin. All of the isolates were negative for virulence genes, including agg, ccf, cylA, cylB, cylLL, cylLS, cylM, esp, and gelE, and hemolytic activity. Furthermore, autoinducer-2 (a quorum-sensing molecule) was detected and quantified via HPLC with fluorescence detection after derivatization with 2,3-diaminonaphthalene. Metabolites profiles of the Lactobacillus sakei D.7 and Lactobacillus plantarum I.60 were observed and presented various organic acids linked with antibacterial activity. Moreover, freeze-dried cell-free supernatants from Lb. sakei (55 mg/mL) and Lb. plantarum (40 mg/mL) showed different minimum effective concentration (MEC) against L. monocytogenes in the food model (whole milk). In summary, these anti-listerial LAB isolates do not pose a risk to consumer health, are eco-friendly, and may be promising candidates for future use as bioprotective cultures and new probiotics to control contamination by L. monocytogenes in the food and dairy industries.


Asunto(s)
Lactobacillales , Listeria , Probióticos , Animales , Lactobacillales/genética , Leche , ARN Ribosómico 16S
6.
Reprod Domest Anim ; 56(2): 342-350, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33247973

RESUMEN

Oxidative stress is inevitable as it is derived from the handling, culturing, inherent metabolic activities and medium supplementation of embryos. This study was performed to investigate the protective effect of chitosan nanoparticles (CNPs) on oxidative damage in porcine oocytes. For this purpose, cumulus-oocyte complexes (COCs) derived from porcine slaughterhouse ovaries were exposed to different concentrations of CNPs (0, 10, 25 and 50 µg/ml) during in vitro maturation (IVM). Oocytes treated with 25 µg/ml CNPs showed significantly higher levels of GSH, along with a significant reduction in ROS levels compared to control, CNPs10 and CNPs50 groups. In parthenogenetic embryo production, the maturation rate was significantly higher in the CNPs25 group than that in the control and all other treated groups. In addition, when compared to the CNPs50 and control groups, CNPs25-treated oocytes showed significantly higher cleavage and blastocyst development rates. The highest concentration of CNPs reduced the total cell number and ratio of ICM: TE cells in parthenogenetic embryos, suggesting that there is a threshold where benefits are lost if exceeded. In cloned embryos, the CNPs25 group, as compared to all other treated groups, showed significantly higher maturation and cleavage rates. Furthermore, the blastocyst development rate in the CNPs25-treated group was significantly higher than that in the CNPs50-treated group, as was the total cell number. Moreover, we found that cloned embryos derived from the CNPs25-treated group showed significantly higher expression levels of Pou5f1, Dppa2, and Ndp52il genes, compared with those of the control and other treated groups. Our results demonstrated that 25 µg/ml CNPs treatment during IVM improves the developmental competence of porcine oocytes by reducing oxidative stress.


Asunto(s)
Quitosano/farmacología , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Oocitos/efectos de los fármacos , Animales , Desarrollo Embrionario/efectos de los fármacos , Femenino , Técnicas de Maduración In Vitro de los Oocitos/métodos , Nanopartículas/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Partenogénesis , Especies Reactivas de Oxígeno/metabolismo , Porcinos
7.
Microorganisms ; 12(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930569

RESUMEN

This study investigated the synergistic effect of combining flavourzyme, a natural enzyme, and floating electrode-dielectric barrier discharge (FE-DBD) plasma (1.1 kV, 43 kHz, N2 1.5 m/s) treatment, a non-thermal decontamination technology, against Escherichia coli biofilms in squid. E. coli (ATCC 35150 and ATCC 14301) biofilms were formed on the surface of squid and treated with different minimum inhibitory concentrations (MICs) of flavourzyme (1/8; 31.25 µL/mL, 1/4; 62.5 µL/mL, 2/4; 125 µL/mL, and 3/4 MIC; 250 µL/mL) and FE-DBD plasma (5, 10, 30, and 60 min). Independently, flavourzyme and FE-DBD plasma treatment decreased by 0.26-1.71 and 0.19-1.03 log CFU/cm2, respectively. The most effective synergistic combination against E. coli biofilms was observed at 3/4 MIC flavourzyme + 60 min FE-DBD plasma exposure, resulting in a reduction of 1.55 log CFU/cm2. Furthermore, the combined treatment exhibited higher efficacy in E. coli biofilm inactivation in squid compared to individual treatments. The pH values of the synergistic combinations were not significantly different from those of the untreated samples. The outcomes indicate that the combined treatment with flavourzyme and FE-DBD plasma can effectively provide effective control of E. coli biofilms without causing pH changes in squid. Therefore, our study suggests a new microbial control method for microbial safety in the seafood industry.

8.
Viruses ; 16(1)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38257810

RESUMEN

The current study investigated the effects of heat treatment (85 °C or 100 °C for 5-20 min) on human norovirus (HuNoV) GII.4's capsid stability in fresh oysters. In addition, propidium monoazide (PMA) was used in viral samples to distinguish infectious viruses and evaluated using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR). Further, we explored the effect of the heat treatment on oyster quality (Hunter color and hardness). The titer of HuNoV for oysters significantly (p < 0.05) decreased to 0.39-1.32 and 0.93-2.27 log10 copy number/µL in the non-PMA and PMA-treated groups, respectively, after heat treatment. HuNoV in oysters not treated with PMA showed a decrease of <1.5 - log10, whereas in PMA-treated oysters, a decrease of >1 - log10 was observed after treatment at 85 °C for 10 min. Treatments for both 15 min and 20 min at 100 °C showed a >99% log10 reduction using PMA/RT-qPCR. In the Hunter color, an increase in heat temperature and duration was associated with a significant decrease in 'L' (brightness+, darkness-) and an increase in 'a' (redness+, greenness-) and 'b' (yellowness+, blueness-) (p < 0.05). Our findings confirmed that the hardness of oyster meat significantly increased with increasing temperature and time (p < 0.05). This study demonstrated that PMA/RT-qPCR was effective in distinguishing HuNoV viability in heat-treated oysters. The optimal heat treatment for oysters was 10 min at 85 °C and 5 min at 100 °C.


Asunto(s)
Azidas , Crassostrea , Norovirus , Humanos , Animales , Propidio , Cápside
9.
Viruses ; 15(7)2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37515285

RESUMEN

Human norovirus (HuNoV) is a common cause of outbreaks linked to food. In this study, the effectiveness of a non-thermal method known as high-pressure processing (HPP) on the viable reduction of an HuNoV GII.4 strain on raw crabs was evaluated at three different pressures (200, 400, and 600 MPa). HuNoV viability in raw crabs was investigated by using propidium monoazide/sarkosyl (PMA) as a nucleic acid intercalating dye prior to performing a real-time reverse transcription-polymerase chain reaction (RT-qPCR). The effect of the HPP exposure on pH, sensory, and Hunter colors were also assessed. HuNoV was reduced in raw crabs compared with control to HPP (0.15-1.91 log) in non-PMA and (0.67-2.23 log) in PMA. HuNoV genomic titer reduction was <2 log copy number/µL) when HPP was treated for 5 min without PMA pretreatment, but it was reduced to >2 log copy number/µL after PMA. The pH and Hunter colors of the untreated and HPP-treated raw crabs were significantly different (p < 0.05), but sensory attributes were not significant. The findings indicate that PMA/RT-qPCR could be used to detect HuNoV infectivity without altering the quality of raw crabs after a 5 min treatment with HPP. Therefore, HuNoV GII.4 could be reduced up to 2.23 log in food at a commercially acceptable pressure duration of 600 MPa for 5 min.


Asunto(s)
Braquiuros , Norovirus , Animales , Humanos , Norovirus/genética , Presión Hidrostática , Reacción en Cadena en Tiempo Real de la Polimerasa , República de Corea
10.
Antibiotics (Basel) ; 12(6)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37370327

RESUMEN

Listeria monocytogenes, a bacterium that is transmitted by tainted food, causes the infection listeriosis. In this study, quercetin was tested for its antibacterial properties and effectiveness as a food additive in preventing the growth of L. monocytogenes cocktail (ATCC19117, ATCC19113, and ATCC15313) biofilms on crabs and shrimps. Quercetin showed the least bactericidal activity and no discernible microbial growth at a minimum inhibitory concentration (MIC) of 250 µg/mL. The biofilm inhibition was performed at sub-MICs (1/2, 1/4, and 1/8 MIC). There was no quercetin added to the control group. Additionally, the present work examines the expression of various genes related to biofilm formation and quorum sensing (flaA, fbp, agrA, hlyA, and prfA). The levels of target genes were all significantly down-regulated. Quercetin (0-125 µg/mL) on the surfaces of the crab and shrimp was studied; its inhibitory effects were measured as log reductions at 0.39-2.31 log CFU/cm2 and 0.42-2.36 log CFU/cm2, respectively (p < 0.05). Quercetin reduced the formation of biofilms by disrupting cell-to-cell connections and causing cell lysis, which led to the deformation of the cells, evidenced by FE-SEM (field-emission scanning electron microscopy). These findings emphasize the significance of using natural food agents to target bacteria throughout the entire food production process.

11.
Antibiotics (Basel) ; 12(3)2023 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-36978476

RESUMEN

Listeria monocytogenes is a major foodborne pathogen. Various methods can be used to control biofilms formed by foodborne pathogens. Recently, the food industry has become interested in plasma, which can be used as a non-thermal technology with minimum changes to product quality. In this study, the effects of dielectric barrier discharge (DBD) plasma on L. monocytogenes mixed-culture biofilms formed on stainless steel (SS), latex hand glove (HG), and silicone rubber (SR) were investigated. DBD plasma effectuated reductions of 0.11-1.14, 0.28-1.27 and 0.37-1.55 log CFU/cm2, respectively. Field emission scanning electron microscopy (FE-SEM) demonstrated that DBD plasma cuts off intercellular contact and induces cell decomposition to prevent the development of biological membranes. It was confirmed that the formed biofilms collapsed and separated into individual bacteria. Our findings suggest that DBD plasma can be used as an alternative non-heating sterilization technology in the food industry to reduce biofilm formation on bacterial targets.

12.
Anim Biosci ; 36(3): 385-403, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36397685

RESUMEN

Male fertility is affected by multiple endogenous stressors, including reactive oxygen species (ROS), which greatly deteriorate the fertility. However, physiological levels of ROS are required by sperm for the proper accomplishment of different cellular functions including proliferation, maturation, capacitation, acrosomal reaction, and fertilization. Excessive ROS production creates an imbalance between ROS production and neutralization resulting in oxidative stress (OS). OS causes male infertility by impairing sperm functions including reduced motility, deoxyribonucleic acid damage, morphological defects, and enhanced apoptosis. Several in-vivo and in-vitro studies have reported improvement in quality-related parameters of sperm following the use of different natural and synthetic antioxidants. In this review, we focus on the causes of OS, ROS production sources, mechanisms responsible for sperm damage, and the role of antioxidants in preserving sperm fertility.

13.
Antioxidants (Basel) ; 11(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36139807

RESUMEN

Listeria monocytogenes is the species of foodborne pathogenic bacteria that causes the infection listeriosis. The food production chain employs various methods to control biofilms, although none are completely successful. This study evaluates the effectiveness of quercetin as a food additive in reducing L. monocytogenes mixed cultures (ATCC19113, ATCC19117, and ATCC15313) biofilm formation on stainless steel (SS), silicon rubber (SR), and hand glove (HG) coupons, as well as tests its antimicrobial activities. With a minimum inhibitory concentration (MIC) of 250 µg/mL, the tested quercetin exhibited the lowest bactericidal action with no visible bacterial growth. In contrast, during various experiments in this work, the inhibitory efficacy of quercetin at sub-MICs levels (1/2, 1/4, and 1/8 MIC) against L. monocytogenes was examined. A control group was not added with quercetin. The current study also investigates the effect of quercetin on the expression of different genes engaged in motility (flaA, fbp), QS (agrA), and virulence (hlyA, prfA). Through increasing quercetin concentration, swarming and swimming motility, biofilm formation, and expression levels of target genes linked to flagella motility, virulence, and quorum-sensing were all dramatically reduced. Quercetin (0−125 µg/mL) was investigated on the SS, SR, and HG surfaces; the inhibitory effects were 0.39−2.07, 0.09−1.96 and 0.03−1.69 log CFU/cm2, respectively (p < 0.05). Field-emission scanning electron microscopy (FE-SEM) corroborated the findings because quercetin prevented the development of biofilms by severing cell-to-cell contacts and inducing cell lysis, which resulted in the loss of normal cell shape. Our findings suggest that plant-derived quercetin should be used as an antimicrobial agent in the food industry to control the development of L. monocytogenes biofilms. These outcomes suggest that bacterial targets are of interest for biofilm reduction, with alternative natural food agents in the food sector along the entire food production chain.

14.
Foods ; 11(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35407064

RESUMEN

Quercetin is an active nutraceutical element that is found in a variety of foods, vegetables, fruits, and other products. Due to its antioxidant properties, quercetin is a flexible functional food that has broad protective effects against a wide range of infectious and degenerative disorders. As a result, research is required on food-contact surfaces (rubber (R) and hand gloves (HG)) that can lead to cross-contamination. In this investigation, the inhibitory effects of quercetin, an antioxidant and antibacterial molecule, were investigated at sub-MIC (125; 1/2, 62.5; 1/4, and 31.25; 1/8 MIC, µg/mL) against Salmonella Typhimurium on surfaces. When quercetin (0−125 µg/mL) was observed on R and HG surfaces, the inhibitory effects were 0.09−2.49 and 0.20−2.43 log CFU/cm2, respectively (p < 0.05). The results were confirmed by field emission scanning electron microscopy (FE-SEM), because quercetin inhibited the biofilms by disturbing cell-to-cell connections and inducing cell lysis, resulting in the loss of normal cell morphology, and the motility (swimming and swarming) was significantly different at 1/4 and 1/2 MIC compared to the control. Quercetin significantly (p < 0.05) suppressed the expression levels of virulence and stress response (rpoS, avrA, and hilA) and quorum-sensing (luxS) genes. Our findings imply that plant-derived quercetin could be used as an antibiofilm agent in the food industry to prevent S. Typhimurium biofilm formation.

15.
Polymers (Basel) ; 14(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36145988

RESUMEN

For the seafood industry, Vibrio parahaemolyticus, one of the most prevalent food-borne pathogenic bacteria that forms biofilms, is a constant cause of concern. There are numerous techniques used throughout the food supply chain to manage biofilms, but none are entirely effective. Through assessing its antioxidant and antibacterial properties, quercetin will be evaluated for its ability to prevent the growth of V. parahaemolyticus biofilm on shrimp and crab shell surfaces. With a minimum inhibitory concentration (MIC) of 220 µg/mL, the tested quercetin exhibited the lowest bactericidal action without visible growth of bacteria. In contrast, during various experiments in this work, the inhibitory efficacy of quercetin without (control) and with sub-MICs levels (1/2, 1/4, and 1/8 MIC) against V. parahaemolyticus was examined. With increasing quercetin concentration, swarming and swimming motility, biofilm formation, and expression levels of related genes linked to flagella motility (flaA and flgL), biofilm formation (vp0952 and vp0962), and quorum-sensing (luxS and aphA) were all dramatically reduced (p < 0.05). Quercetin (0−110 µg/mL) was investigated on shrimp and crab shell surfaces, the inhibitory effects were 0.68−3.70 and 0.74−3.09 log CFU/cm2, respectively (p < 0.05). The findings were verified using field emission scanning electron microscopy (FE-SEM), which revealed quercetin prevented the development of biofilms by severing cell-to-cell contacts and induced cell lysis, which resulted in the loss of normal cell shape. Furthermore, there was a substantial difference in motility between the treatment and control groups (swimming and swarming). According to our findings, plant-derived quercetin should be used as an antimicrobial agent in the food industry to inhibit the establishment of V. parahaemolyticus biofilms. These findings suggest that bacterial targets are of interest for biofilm reduction with alternative natural food agents in the seafood sector along the entire food production chain.

16.
Microorganisms ; 10(10)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36296179

RESUMEN

Vibrio parahaemolyticus, one of the most common foodborne pathogenic bacteria that forms biofilms, is a persistent source of concern for the food industry. The food production chain employs a variety of methods to control biofilms, although none are completely successful. This study aims to evaluate the effectiveness of quercetin as a food additive in reducing V. parahaemolyticus biofilm formation on stainless-steel coupons (SS) and hand gloves (HG) as well as testing its antimicrobial activities. With a minimum inhibitory concentration (MIC) of 220 µg/mL, the tested quercetin exhibited the lowest bactericidal action without visible growth. In contrast, during various experiments in this work, the inhibitory efficacy of quercetin at sub-MICs levels (1/2, 1/4, and 1/8 MIC) against V. parahaemolyticus was examined. Control group was not added with quercetin. With increasing quercetin concentration, swarming and swimming motility, biofilm formation, and expression levels of target genes linked to flagellar motility (flaA, flgL), biofilm formation (vp0952, vp0962), virulence (VopQ, vp0450), and quorum-sensing (aphA, luxS) were all dramatically suppressed. Quercetin (0−110 µg/mL) was investigated on SS and HG surfaces, the inhibitory effect were 0.10−2.17 and 0.26−2.31 log CFU/cm2, respectively (p < 0.05). Field emission scanning electron microscopy (FE-SEM) corroborated the findings because quercetin prevented the development of biofilms by severing cell-to-cell contacts and inducing cell lysis, which resulted in the loss of normal cell shape. Additionally, there was a significant difference between the treated and control groups in terms of motility (swimming and swarming). According to our research, quercetin produced from plants should be employed as an antibiofilm agent in the food sector to prevent the growth of V. parahaemolyticus biofilms. These results indicate that throughout the entire food production chain, bacterial targets are of interest for biofilm reduction with alternative natural food agents in the seafood industry.

17.
Microorganisms ; 10(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36557600

RESUMEN

Biofilm is a complex matrix made up of extracellular polysaccharides, DNA, and proteins that protect bacteria against physical, chemical, and biological stresses and allow them to survive in harsh environments. Safe and healthy foods are mandatory for saving lives. However, foods can be contaminated by pathogenic microorganisms at any stage from farm to fork. The contaminated foods allow pathogenic microorganisms to form biofilms and convert the foods into stigmatized poison for consumers. Biofilm formation by pathogenic microorganisms in agri-farm industries is still poorly understood and intricate to control. In biofilms, pathogenic bacteria are dwelling in a complex manner and share their genetic and physicochemical properties making them resistant to common antimicrobial agents. Therefore, finding the appropriate antibiofilm approaches is necessary to inhibit and eradicate the mature biofilms from foods and food processing surfaces. Advanced studies have already established several emerging antibiofilm approaches including plant- and microbe-derived biological agents, and they proved their efficacy against a broad-spectrum of foodborne pathogens. This review investigates the pathogenic biofilm-associated problems in agri-farm industries, potential remedies, and finding the solution to overcome the current challenges of antibiofilm approaches.

18.
Food Res Int ; 156: 111163, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35651029

RESUMEN

Foodborne pathogen-mediated biofilms in food processing environments are severe threats to human lives. In the interest of human and environmental safety, natural substances with antimicrobial properties and generally regarded as safe (GRAS) status are the futuristic disinfectants of the food industry. In this study, the efficacy of bioactive, soluble products (metabolic by-products) from lactic acid bacteria (LAB) and plant-derived essential oils (EO) were investigated as biocidal agents. The postbiotic produced by kimchi-derived Leuconostoc mesenteroides J.27 isolate was analyzed for its metabolic components to reveal its antimicrobial potential against three pathogenic microorganisms (Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Escherichia coli). Additionally, the efficacy of food-grade EO (eugenol and thymol, respectively) was also assessed in our study. Determination of the minimum inhibitory concentration (MIC) of postbiotic and EO against three tested pathogens revealed that the sub-MIC (0.5 MIC) of postbiotic and EO could efficiently inhibit the biofilm formation on both seafood (squid) and seafood-processing surfaces (rubber and low-density polyethylene plastic). Moreover, the polymerase chain reaction (PCR) analysis confirmed that the LAB J.27 isolate possesses bacteriocin- and enzyme-coding genes. The residual antibacterial activity of the produced postbiotic was maintained over a diverse pH range (pH 1-6) but was entirely abolished at neutral or higher pH values. However, the activity was unaffected by exposure to high temperatures (100 and 121 °C) and storage (30 days). Notably, the leakage of intracellular metabolites, damage to DNA, and the down-regulation of biofilm-associated gene expression in the pathogens increased significantly (p > 0.05) following the combination treatment of postbiotic with thymol compared to postbiotic with eugenol. Nonetheless, all in vitro results indicated the prospective use of combining Leu. mesenteroides J.27-derived postbiotic with both EO as a "green preservative" in the seafood industry to inhibit the formation of pathogenic microbial biofilms.


Asunto(s)
Antiinfecciosos , Leuconostoc mesenteroides , Aceites Volátiles , Vibrio parahaemolyticus , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Biopelículas , Escherichia coli , Eugenol , Humanos , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Estudios Prospectivos , Pseudomonas aeruginosa , Alimentos Marinos , Timol/farmacología
19.
Front Cell Dev Biol ; 9: 647616, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996810

RESUMEN

The objective of this study was to investigate the effect of milrinone supplementation as a phosphodiesterase 3A inhibitor during in vitro maturation (IVM) to coordinate the cytoplasmic and nuclear maturation of porcine oocytes and subsequent development of porcine cloned embryos. Brilliant cresyl blue (BCB)-stained (BCB +) oocytes, classified as well-developed, and BCB- oocytes were used in parthenogenesis (PA) and cloning, and their preimplantation development was compared. In PA embryos, BCB + oocytes had significantly higher rates of development than BCB- oocytes in terms of maturation (87.5 vs. 71.3%), cleavage (88.6 vs. 76.3%), and blastocyst development (34.3 vs. 25.3%) and also had higher cell numbers (46.9 vs. 38.9%), respectively (p < 0.05). In cloned embryos, the BCB + group also had a significantly higher blastocyst formation rate than the BCB- group (30.6 vs. 20.1%; p < 0.05). Supplementation with 75 µM milrinone during IVM of BCB- oocytes showed improvement in maturation and blastocyst development rates, which may be due to the coordinated maturation of the cytoplasm with the nucleus as an effect of milrinone. Moreover, the analysis of nuclear reprogramming via the examination of the expression levels of the reprogramming-related genes POU5F1, DPPA2, and NDP52IL in milrinone-supplemented BCB- oocytes showed higher expression levels than that in non-treated BCB- oocytes. These findings demonstrate that milrinone is useful in improving developmental competence in less competent oocytes during IVM and for proper nuclear reprogramming in the production of porcine cloned embryos by coordinating cytoplasmic and nucleus maturation.

20.
Food Res Int ; 147: 110461, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34399461

RESUMEN

Salmonella enterica and Shiga toxin-producing (or verotoxin-producing) Escherichia coli are major foodborne pathogens, posing substantial food safety risks. Due to the negative effects of chemical treatment against foodborne pathogens, the application of enzyme-based techniques is currently receiving great attention. Here, we evaluated the inhibitory properties of Flavourzyme, a commercial peptidase, against these two foodborne pathogens. We noticed 4.0 and 5.5 log inhibition of biofilm formation by S. Typhimurium and E. coli, respectively, while treated with sub-minimum inhibitory concentrations of Flavourzyme for 24 h. For both bacteria, the enzyme exhibited quorum-quenching activity, preventing autoinducer-2 production completely by E. coli. In addition, Flavourzyme significantly suppressed the relative expression levels of biofilm-forming, quorum sensing, and virulence regulatory genes as measured by qRT-PCR. Based on our results, we suggest the use of Flavourzyme as a preventive agent against foodborne pathogens that possibly acts by inhibiting bacterial self-defense mechanisms following disruption of cellular proteins. This finding may shed light on how enzymes can be applied as a novel weapon to control foodborne illnesses to ensure food safety and public health.


Asunto(s)
Salmonella typhimurium , Escherichia coli Shiga-Toxigénica , Biopelículas , Endopeptidasas , Percepción de Quorum , Salmonella typhimurium/genética , Escherichia coli Shiga-Toxigénica/genética , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA