Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Blood ; 137(2): 232-237, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33443552

RESUMEN

Emergence of drug resistance to all available therapies is the major challenge to improving survival in myeloma. Cereblon (CRBN) is the essential binding protein of the widely used immunomodulatory drugs (IMiDs) and novel CRBN E3 ligase modulator drugs (CELMoDs) in myeloma, as well as certain proteolysis targeting chimeras (PROTACs), in development for a range of diseases. Using whole-genome sequencing (WGS) data from 455 patients and RNA sequencing (RNASeq) data from 655 patients, including newly diagnosed (WGS, n = 198; RNASeq, n = 437), lenalidomide (LEN)-refractory (WGS, n = 203; RNASeq, n = 176), and pomalidomide (POM)-refractory cohorts (WGS, n = 54; RNASeq, n = 42), we found incremental increases in the frequency of 3 CRBN aberrations, namely point mutations, copy losses/structural variations, and a specific variant transcript (exon 10 spliced), with progressive IMiD exposure, until almost one-third of patients had CBRN alterations by the time they were POM refractory. We found all 3 CRBN aberrations were associated with inferior outcomes to POM in those already refractory to LEN, including those with gene copy losses and structural variations, a finding not previously described. This represents the first comprehensive analysis and largest data set of CBRN alterations in myeloma patients as they progress through therapy. It will help inform patient selection for sequential therapies with CRBN-targeting drugs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/genética , Mieloma Múltiple/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/genética , Variación Genética , Humanos , Lenalidomida/uso terapéutico , Talidomida/análogos & derivados , Talidomida/uso terapéutico
2.
Blood ; 132(6): 587-597, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-29884741

RESUMEN

Understanding the profile of oncogene and tumor suppressor gene mutations with their interactions and impact on the prognosis of multiple myeloma (MM) can improve the definition of disease subsets and identify pathways important in disease pathobiology. Using integrated genomics of 1273 newly diagnosed patients with MM, we identified 63 driver genes, some of which are novel, including IDH1, IDH2, HUWE1, KLHL6, and PTPN11 Oncogene mutations are significantly more clonal than tumor suppressor mutations, indicating they may exert a bigger selective pressure. Patients with more driver gene abnormalities are associated with worse outcomes, as are identified mechanisms of genomic instability. Oncogenic dependencies were identified between mutations in driver genes, common regions of copy number change, and primary translocation and hyperdiploidy events. These dependencies included associations with t(4;14) and mutations in FGFR3, DIS3, and PRKD2; t(11;14) with mutations in CCND1 and IRF4; t(14;16) with mutations in MAF, BRAF, DIS3, and ATM; and hyperdiploidy with gain 11q, mutations in FAM46C, and MYC rearrangements. These associations indicate that the genomic landscape of myeloma is predetermined by the primary events upon which further dependencies are built, giving rise to a nonrandom accumulation of genetic hits. Understanding these dependencies may elucidate potential evolutionary patterns and lead to better treatment regimens.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Mieloma Múltiple/genética , Mutagénesis , Oncogenes , Células Clonales , Análisis Mutacional de ADN , ADN de Neoplasias/genética , Conjuntos de Datos como Asunto , Dosificación de Gen , Estudio de Asociación del Genoma Completo , Inestabilidad Genómica , Genómica , Humanos , Pérdida de Heterocigocidad , Mieloma Múltiple/patología , Mutación , Pronóstico , Translocación Genética , Resultado del Tratamiento , Secuenciación del Exoma
3.
Leukemia ; 33(1): 159-170, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29967379

RESUMEN

Patients with newly diagnosed multiple myeloma (NDMM) with high-risk disease are in need of new treatment strategies to improve the outcomes. Multiple clinical, cytogenetic, or gene expression features have been used to identify high-risk patients, each of which has significant weaknesses. Inclusion of molecular features into risk stratification could resolve the current challenges. In a genome-wide analysis of the largest set of molecular and clinical data established to date from NDMM, as part of the Myeloma Genome Project, we have defined DNA drivers of aggressive clinical behavior. Whole-genome and exome data from 1273 NDMM patients identified genetic factors that contribute significantly to progression free survival (PFS) and overall survival (OS) (cumulative R2 = 18.4% and 25.2%, respectively). Integrating DNA drivers and clinical data into a Cox model using 784 patients with ISS, age, PFS, OS, and genomic data, the model has a cumlative R2 of 34.3% for PFS and 46.5% for OS. A high-risk subgroup was defined by recursive partitioning using either a) bi-allelic TP53 inactivation or b) amplification (≥4 copies) of CKS1B (1q21) on the background of International Staging System III, comprising 6.1% of the population (median PFS = 15.4 months; OS = 20.7 months) that was validated in an independent dataset. Double-Hit patients have a dire prognosis despite modern therapies and should be considered for novel therapeutic approaches.


Asunto(s)
Biomarcadores de Tumor/genética , Aberraciones Cromosómicas , Genoma Humano , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mieloma Múltiple/genética , Humanos , Mieloma Múltiple/diagnóstico , Pronóstico , Factores de Riesgo , Tasa de Supervivencia
4.
mBio ; 7(4)2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27460797

RESUMEN

UNLABELLED: Ebolavirus (EBOV) is an RNA virus that is known to cause severe hemorrhagic fever in humans and other primates : EBOV successfully enters and replicates in many cell types. This replication is dependent on the virus successfully coopting a number of cellular factors. Many of these factors are currently unidentified but represent potential targets for antiviral therapeutics. Here we show that cellular polyamines are critical for EBOV replication. We found that small-molecule inhibitors of polyamine synthesis block gene expression driven by the viral RNA-dependent RNA polymerase. Short hairpin RNA (shRNA) knockdown of the polyamine pathway enzyme spermidine synthase also resulted in reduced EBOV replication. These findings led us to further investigate spermidine, a polyamine that is essential for the hypusination of eukaryotic initiation factor 5A (eIF5A). Blocking the hypusination of eIF5A (and thereby inhibiting its function) inhibited both EBOV gene expression and viral replication. The mechanism appears to be due to the importance of hypusinated eIF5A for the accumulation of VP30, an essential component of the viral polymerase. The same reduction in hypusinated eIF5A did not alter the accumulation of other viral polymerase components. This action makes eIF5A function an important gate for proper EBOV polymerase assembly and function through the control of a single virus protein. IMPORTANCE: Ebolavirus (EBOV) is one of the most lethal human pathogens known. EBOV requires host factors for replication due to its small RNA genome. Here we show that the host protein eIF5A in its activated form is necessary for EBOV replication. We further show that the mechanism is through the accumulation of a single EBOV protein, VP30. To date, no other host proteins have been shown to interfere with the translation or stability of an EBOV protein. Activated eIF5A is the only protein in the cell known to contain the specific modification of hypusine; therefore, this pathway is a target for drug development. Further investigation into the mechanism of eIF5A interaction with VP30 could provide insight into therapeutics to combat EBOV.


Asunto(s)
Ebolavirus/fisiología , Regulación Viral de la Expresión Génica , Interacciones Huésped-Patógeno , Espermidina/metabolismo , Replicación Viral , Línea Celular , Humanos , Factores de Iniciación de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Factores de Transcripción/biosíntesis , Proteínas Virales/biosíntesis , Factor 5A Eucariótico de Iniciación de Traducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA