Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 351: 119730, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086123

RESUMEN

In this study, the behavior of heavy metal transformation during the co-thermal treatment of hazardous waste incineration fly ash (HWIFA) and Fe-containing hazardous waste (including hazardous waste incineration bottom slag (HWIBS) and electroplating sludge (ES)) was investigated. The findings demonstrated that such a treatment effectively reduced the static leaching toxicity of Cr and Pb. Moreover, when the treatment temperature exceeded 1000 °C, the co-thermal treated sample exhibited low concentrations of dynamically leached Cr, Pb, and Zn, indicating that these heavy metals were successful detoxified. Thermodynamic analyses and phase transformation results suggested that the formation of spinel and the gradual disappearance of chromium dioxide in the presence of Fe-containing hazardous wastes contributed to the solidification of chromium. Additionally, the efficient detoxification of Pb and Zn was attributed to their volatilization and entry into the liquid phase during the co-thermal treatment process. Therefore, this study sets an excellent example of the co-thermal treatment of hazardous wastes and the control of heavy metal pollution during the treatment process.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Ceniza del Carbón , Eliminación de Residuos/métodos , Aguas del Alcantarillado/análisis , Residuos Peligrosos/análisis , Galvanoplastia , Plomo , Incineración/métodos , Metales Pesados/análisis , Residuos Sólidos/análisis , Carbono , Material Particulado/análisis
2.
J Environ Manage ; 338: 117776, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36965423

RESUMEN

Based on the CaO-SiO2-Al2O3 system, the feasibility of co-vitrification of hazardous waste incineration fly ash (FA) and hazardous waste sludge (HWS) was verified. In the CaO-SiO2-Al2O3 ternary system diagram, the melting point of the system gradually decreases with an appropriate increase in SiO2 content when the CaO/Al2O3 ratio is determined to be approximately 1. The TG-DSC results revealed that the liquid phase generation temperature in the FA and HWS mixture system was significantly lower than those of FA and HWS individually owing to the different CaO, SiO2, and Al2O3 contents; this is consistent with the results of the theoretical melting characteristics analysis, which show that the melting characteristic temperatures can be reduced by controlling the CaO-SiO2-Al2O3 ratio in the system. The co-vitrification experimental results confirmed that a vitreous content above 92%, a loss ratio on acid dissolution less than 1.74%, and leaching toxicity of heavy metals lower than 0.15 mg/L could be obtained by adjusting the CaO, SiO2, and Al2O3 contents in the FA and HWS system to 20 wt%-32.5 wt%, 35 wt%-61 wt% and 14 wt%-32.5 wt%, respectively, and under a melting temperature of 1350 °C.


Asunto(s)
Metales Pesados , Eliminación de Residuos , Ceniza del Carbón , Incineración , Dióxido de Silicio , Aguas del Alcantarillado , Vitrificación , Metales Pesados/análisis , Residuos Sólidos/análisis , Eliminación de Residuos/métodos , Carbono , Residuos Peligrosos , Material Particulado/análisis
3.
Environ Sci Pollut Res Int ; 27(12): 14198-14206, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32037492

RESUMEN

Chlorotoluene rectification residual liquid (CRRL) from chlorotolune industry is hard to dispose of because of its high chlorine concentration, which poses high dioxin risk once it is subjected to incinerate. This research employed a chemical approach by using Williamson ether synthesis (WES) method for CRRL dechlorination. It shows that the sodium dosage, the ethanol dosage, and the ultrasonic time are the key factors in chlorine removal. The highest removal rate of chlorine was observed when the sodium dosage, the ethanol dosage, and the ultrasonic time were 0.35 g mL-1, 0.8 mL mL-1, and 15 min, respectively. The further optimization tests indicate that the highest chlorine removal efficiency of 39.06% was observed when the ultrasonic time was 15 min, the sodium dosage and the ethanol dosage were 0.5 g mL-1 and 1.1 mL mL-1, respectively. It suggests a feasible chlorine removal process for organic hazardous waste with high chlorine content before incineration.


Asunto(s)
Cloro , Dioxinas , Éteres , Residuos Peligrosos , Incineración
4.
Environ Sci Pollut Res Int ; 27(4): 4227-4235, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31828702

RESUMEN

Hazardous waste landfill leachate (HWLL) with high concentrations of salt and pollutants has created a bottleneck at hazardous waste landfills. This study applied a cement-based curing method to the disposal of HWLL. The highest contaminant fixing rate was achieved by adjusting the composition and proportion of the curing base, the content of additives, and the liquid-solid (L/S) ratio of the leachate to the curing base. The fixing rates for chemical oxygen demand and salt content in HWLL reached the highest values of 95.1% and 86.1%, respectively, when the Portland cement to metakaolin ratio was 3:2; the L/S was 1; and diatomite and activated carbon were added at 0.5% and 0.25%, respectively. The addition of glass fiber to the curing base improved the crack resistance of the solidified product. A simulated landfill experiment further indicated that after 116 days of leaching, the leachate effluent pollutant concentrations of the landfill column were lower than the effluent standard. Solidification is a feasible method for HWLL disposal.


Asunto(s)
Residuos Peligrosos , Eliminación de Residuos/métodos , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua , Análisis de la Demanda Biológica de Oxígeno , Residuos Sólidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA