Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 11(5): 128-37, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22442256

RESUMEN

The defining step in most chromatin immunoprecipitation (ChIP) assays is the use of an antibody to enrich for a particular protein or histone modification state associated with segments of chromatin. The specificity of the antibody is critical to the interpretation of the experiment, yet this property is rarely reported. Here, we present a quantitative method using mass spectrometry to characterize the specificity of key histone H3 modification-targeting antibodies that have previously been used to characterize the "histone code." We further extend the use of these antibody reagents to the observation of long range correlations among disparate histone modifications. Using purified human histones representing the mixture of chromatin states present in living cells, we were able to quantify the degree of target enrichment and the specificity of several commonly used, commercially available ChIP grade antibodies. We found significant differences in enrichment efficiency among various reagents directed against four frequently studied chromatin marks: H3K4me2, H3K4me3, H3K9me3, and H3K27me3. For some antibodies, we also detected significant off target enrichment of alternate modifications at the same site (i.e., enrichment of H3K4me2 by an antibody directed against H3K4me3). Through cluster analysis, we were able to recognize patterns of co-enrichment of marks at different sites on the same histone protein. Surprisingly, these co-enrichments corresponded well to "canonical" chromatin states that are exemplary of activated and repressed regions of chromatin. Altogether, our findings suggest that 1) the results of ChIP experiments need to be evaluated with caution given the potential for cross-reactivity of the commonly used histone modification recognizing antibodies, 2) multiple marks with consistent biological interpretation exist on the same histone protein molecule, and 3) some components of the histone code may be transduced on single proteins in living cells.


Asunto(s)
Anticuerpos/química , Inmunoprecipitación de Cromatina , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Especificidad de Anticuerpos , Análisis por Conglomerados , Células HeLa , Histonas/inmunología , Histonas/aislamiento & purificación , Humanos , Metilación , Fosforilación , Unión Proteica
2.
J Proteome Res ; 8(6): 3154-60, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19344186

RESUMEN

The ability to perform thorough sampling is of critical importance when using mass spectrometry to characterize complex proteomic mixtures. A common approach is to reinterrogate a sample multiple times by LC-MS/MS. However, the conventional data-dependent acquisition methods that are typically used in proteomics studies will often redundantly sample high-intensity precursor ions while failing to sample low-intensity precursors entirely. We describe a method wherein the masses of successfully identified peptides are used to generate an accurate mass exclusion list such that those precursors are not selected for sequencing during subsequent analyses. We performed multiple concatenated analytical runs to sample a complex cell lysate, using either accurate mass exclusion-based data-dependent acquisition (AMEx) or standard data-dependent acquisition, and found that utilization of AMEx on an ESI-Orbitrap instrument significantly increases the total number of validated peptide identifications relative to a standard DDA approach. The additional identified peptides represent precursor ions that exhibit low signal intensity in the sample. Increasing the total number of peptide identifications augmented the number of proteins identified, as well as improved the sequence coverage of those proteins. Together, these data indicate that using AMEx is an effective strategy to improve the characterization of complex proteomic mixtures.


Asunto(s)
Espectrometría de Masas/métodos , Proteómica/métodos , Algoritmos , Cromatografía Liquida , Células HeLa , Humanos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Proteínas/química , Proteínas/metabolismo , Tripsina/metabolismo
3.
J Exp Biol ; 209(Pt 4): 656-67, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16449560

RESUMEN

The blue mussel Mytilus galloprovincialis, a native of the Mediterranean Sea, has invaded the west coast of North America in the past century, displacing the native blue mussel, Mytilus trossulus, from most of its former habitats in central and southern California. The invasive success of M. galloprovincialis is conjectured to be due, in part, to physiological adaptations that enable it to outperform M. trossulus at high temperatures. We have examined the structure and function of the enzyme cytosolic malate dehydrogenase (cMDH) from these species, as well as from the more distantly related ribbed mussel, Mytilus californianus, to characterize the effects of temperature on kinetic properties thought to exhibit thermal adaptation. The M. trossulus cMDH ortholog differs from the other cMDHs in a direction consistent with cold adaptation, as evidenced by a higher and more temperature-sensitive Michaelis-Menten constant for the cofactor NADH (Km(NADH)). This difference results from minor changes in sequence: the M. trossulus ortholog differs from the M. galloprovincialis ortholog by only two substitutions in the 334 amino acid monomer, and the M. californianus and M. trossulus orthologs differ by five substitutions. In each case, only one of these substitutions is non-conservative. To test the effects of individual substitutions on kinetic properties, we used site-directed mutagenesis to create recombinant cMDHs. Recombinant wild-type M. trossulus cMDH (rWT) has high Km(NADH) compared with mutants incorporating the non-conservative substitutions found in M. californianus and M. galloprovincialis - V114H and V114N, respectively - demonstrating that these mutations are responsible for the differences found in substrate affinity. Turnover number (kcat) is also higher in rWT compared with the two mutants, consistent with cold adaptation in the M. trossulus ortholog. Conversely, rWT and V114H appear more thermostable than V114N. Based on a comparison of Km(NADH) and kcat values among the orthologs, we propose that immersion temperatures are of greater selective importance in adapting kinetic properties than the more extreme temperatures that occur during emersion. The relative warm adaptation of M. galloprovincialis cMDH may be one of a suite of physiological characters that enhance the competitive ability of this invasive species in warm habitats.


Asunto(s)
Malato Deshidrogenasa/metabolismo , Mytilus/enzimología , Temperatura , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Demografía , Estabilidad de Enzimas , Geografía , Malato Deshidrogenasa/química , Malato Deshidrogenasa/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Dinámica Poblacional , Conformación Proteica , Desnaturalización Proteica , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA