Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cosmet Sci ; 61(6): 421-37, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21241633

RESUMEN

New thermosensitive, cationic hydrogels were synthesized by the dispersion copolymerization of N-isopropylacrylamide (NIPAM) and (3-acrylamidopropyl)trimethylammonium chloride (AAPTAC). In the polymerization protocol, an amide-based comonomer, (3-acrylamidopropyl)trimethylammonium chloride, was reacted as a new alternative monomer for introducing positive charges into the thermosensitive hydrogel. The hydrogels were synthesized without making any pH adjustment in the aqueous medium. These hydrogel particles exhibited colloidal stability in the pH range of 1.5 to 11.0, while similar cationic hydrogels were reported to be unstable at pHs higher than 6. The stronger cationic character of the selected comonomer provided higher colloidal stability to the poly(NIPAM-co-AAPTAC) hydrogels. Furthermore, these hydrogels displayed sensitivity towards temperature, pH, and salt concentration. Interestingly, the particle size of hydrogels was found to be decreased significantly with an increase in temperature and salt concentration. In addition, using pyrene fluorescence spectroscopy, it was established that the hydrophobicity/hydrophilicity of the hydrogel particles was largely controlled by both pH and temperature. The thermosensitive hydrogels reported in this paper may be suitable for delivering different actives for cosmetic and medical applications. Although direct application of these hydrogel particles in cosmetics has not been shown at this stage, the methodology of making them and controlling their absorption and release properties as a function of temperature and pH has been demonstrated. Furthermore, these hydrogels may also have applications in scavenging organic and inorganic toxics.


Asunto(s)
Acrilamidas/química , Cosméticos/química , Hidrogeles/síntesis química , Compuestos de Amonio Cuaternario/química , Cosméticos/síntesis química , Conductividad Eléctrica , Humanos , Hidrogeles/química , Luz , Microscopía de Fuerza Atómica , Polimerizacion , Dispersión de Radiación , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
2.
J Cosmet Sci ; 56(5): 323-30, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16258698

RESUMEN

Cationic conditioning compounds protect against hair damage caused by cosmetic chemical treatments and grooming practices. They also enhance the retention of moisture. However, the question as to whether they do this superficially by residing on the hair surface or by penetrating into the fiber remains unanswered. In this work, an attempt has been made to show the penetration of a low-molecular-weight cationic conditioning compound into the hair cortex using the time-of-flight secondary ion mass spectrometry (TOF SIMS) method, applied in earlier research to show the penetration of oils into hair. An example of the practical benefit of such penetration into the cortex in greatly improving the fatigue resistance of hair has been discussed.


Asunto(s)
Preparaciones para el Cabello , Cabello/química , Espectrometría de Masas/métodos , Cationes , Aceites , Permeabilidad
3.
J Cosmet Sci ; 55(1): 13-27, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15037918

RESUMEN

The effect of curling hair with a curling iron has been investigated. Possibilities of thermal damage with repeated curling according to, and in violation of, the manufacturer's specifications have been studied. The propensity of hair surface to damage depends on the moisture content of the hair, and these experiments have been conducted in both wet and dry conditions, with and without application of tension, and with short or prolonged times. Scanning electron microscopic (SEM) examination revealed that fibers treated under the dry condition (50% RH) show radial and axial cracking along with scale edge fusion. Similar thermal treatment on wet hair resulted in severe damage of the type described above, as well as bubbling and buckling of the cuticle due to the formation and escaping of steam from the fiber. Fibers subjected to repeated curling in the dry condition show slight increases in tensile mechanical properties, characteristic of a crosslinked fiber. Fibers treated with conditioners show an improvement in characteristic life, especially in the case of low-molecular-weight conditioners, such as CETAB, which can penetrate into the hair fiber (shown by TOF-SIMS analysis).


Asunto(s)
Cabello/ultraestructura , Calor/efectos adversos , Humanos , Microscopía Electrónica de Rastreo , Propiedades de Superficie
4.
J Cosmet Sci ; 54(4): 379-94, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14528390

RESUMEN

Microspectrophotometric and electrophoretic methods were used to characterize and quantify the effects of primary damage to hair from chemical and photochemical oxidative processes. The diffusion of molecules proceeding from the fiber surface to the center of untreated and modified (by chemical and photochemical oxidative processes) hair fibers was mapped by fluorescence microscopy and quantified by calculating diffusion coefficients of a fluorescent molecule. In addition, an electrophoretic separation technique, namely, SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis), was used not only to substantiate the results obtained in the microfluorometric study, but also to show how the main classes of proteins of unaltered hair are modified by cosmetic chemical treatments, light exposure, and combinations of these two processes. UV microspectrophotometry is an alternate analytical method to evaluate photo-oxidative damage in hair, and supports the results obtained by microfluorometry.


Asunto(s)
Cabello , Difusión , Electroforesis en Gel de Poliacrilamida , Humanos , Fotoquímica , Espectrofotometría Ultravioleta
5.
J Cosmet Sci ; 54(6): 579-88, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14730374

RESUMEN

Conditioners are known to have a prophylactic effect on hair damage caused by cosmetic chemical treatments or mechanical grooming procedures. They are known to impart softness and smoothness to hair by moisturizing the fiber. Since the amount of conditioners deposited on the fiber is very small in quantity, it is conceivable that mainly the surface is moisturized. This is especially true of polymeric conditioners, which deposit preferentially on the surface of the fiber, rather than penetrate into the cortex. Therefore, this study strictly investigates whether cationic polymeric conditioners impart softness to the surface cuticle cell as a result of their hydrophilicity, with no regard to its applicability to cosmetic effects. Such softening can be detected by indentation of the surface and can be quantified by measuring the depth of the indent in real time. Atomic force microscopy (AFM), equipped with nano-indentation capability, is ideally suited for this purpose. In this work it was used to determine changes in the microhardness (micromechanical properties) of the hair fiber surface as a result of fiber/conditioner/moisture interactions. In a preliminary study, we observed that the scale faces of hair treated with Polyquaternium 10 (PQ-10) conditioner gave deeper indents, while scale edges yielded shallower ones in comparison to cuticle cells of untreated hair. This suggests that the conditioner softens the scale face and hardens the scale edges. However, because of significant amounts of conditioner residues left on the scale face, this conclusion was rather ambiguous. Therefore, the study was repeated in which multiple indentations were made on the surface cuticle cells of a larger number of the same hair fibers before and after multiple applications of the conditioner. This reduces errors due to fiber-to-fiber variation in pre-existing microhardness differences in surface cuticle cells. Also, the larger number of fibers investigated in the current work allowed for a statistical outcome. This latter study has led to a rather definite conclusion that the scale face is indeed softened by polymeric conditioners such as Polyquaternium-10 (PQ-10). These studies will ultimately help in the development of conditioners with suitable moisturizing and softening effect on hair.


Asunto(s)
Preparaciones para el Cabello , Microscopía de Fuerza Atómica/métodos , Propiedades de Superficie
6.
J Cosmet Sci ; 52(3): 169-84, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11413497

RESUMEN

An attempt has been made to show the difference in the penetrability of coconut oil and mineral oil in human hair. We have used secondary ion mass spectrometry (SIMS) in combination with a time-of-flight (TOF) mass spectrometer. Characteristic ions formed by the pure components when bombarded with gallium ions have been identified with their m/z values. The distribution of the ion, characteristic of the particular treatment, has been established in the cross sections of hair treated with coconut and mineral oils. The results show that coconut oil penetrates the hair shaft while mineral oil does not. The difference may be due to the polarity of the coconut oil compared to the nonpolar nature of the mineral oil. The affinity of the penetrant to the protein seems to be the cause for this difference in their behavior. This study also indicates that the swelling of hair is limited by the presence oil. Since the process of swelling and deswelling of hair is one of the causes of hair damage by hygral fatigue, coconut oil, which is a better penetrant than mineral oil, may provide better protection from damage by hygral fatigue.


Asunto(s)
Cabello/metabolismo , Espectrometría de Masas/métodos , Aceite Mineral/farmacocinética , Aceites de Plantas/farmacocinética , Aceite de Coco , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA