Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Med Genet A ; 194(5): e63505, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38168469

RESUMEN

Data science methodologies can be utilized to ascertain and analyze clinical genetic data that is often unstructured and rarely used outside of patient encounters. Genetic variants from all genetic testing resulting to a large pediatric healthcare system for a 5-year period were obtained and reinterpreted utilizing the previously validated Franklin© Artificial Intelligence (AI). Using PowerBI©, the data were further matched to patients in the electronic healthcare record to associate with demographic data to generate a variant data table and mapped by ZIP codes. Three thousand and sixty-five variants were identified and 98% were matched to patients with geographic data. Franklin© changed the interpretation for 24% of variants. One hundred and fifty-six clinically actionable variant reinterpretations were made. A total of 739 Mendelian genetic disorders were identified with disorder prevalence estimation. Mapping of variants demonstrated hot-spots for pathogenic genetic variation such as PEX6-associated Zellweger Spectrum Disorder. Seven patients were identified with Bardet-Biedl syndrome and seven patients with Rett syndrome amenable to newly FDA-approved therapeutics. Utilizing readily available software we developed a database and Exploratory Data Analysis (EDA) methodology enabling us to systematically reinterpret variants, estimate variant prevalence, identify conditions amenable to new treatments, and localize geographies enriched for pathogenic variants.


Asunto(s)
Inteligencia Artificial , Ciencia de los Datos , Humanos , Niño , Prevalencia , Pruebas Genéticas/métodos , ATPasas Asociadas con Actividades Celulares Diversas
2.
Am J Med Genet A ; 191(7): 1978-1983, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37134191

RESUMEN

Uniparental disomy (UPD) is the inheritance of both chromosomal homologs from one parent. Depending on the chromosome involved and the parental origin, UPD may result in phenotypic abnormalities due to aberrant methylation patterns or unmasking recessive conditions in isodisomic regions. UPD primarily originates from somatic rescue of a single meiotically-derived aneuploidy, most commonly a trisomy. Double UPD is exceedingly rare and triple UPD has not been previously described. Here, we report two unrelated clinical cases with UPD of multiple chromosomes; an 8-month-old male with maternal isodisomy of chromosome 7 and paternal isodisomy of chromosome 9, and a 4-week-old female with mixed paternal UPD for chromosomes 4, 10, and 14. These cases also demonstrate that although extremely rare, the detection of AOH on two or more chromosomes may warrant additional clinical and laboratory investigation such as methylation and STR marker analysis, especially when involving chromosomes known to be associated with imprinting disorders.


Asunto(s)
Aberraciones Cromosómicas , Disomía Uniparental , Masculino , Femenino , Humanos , Disomía Uniparental/genética , Fenotipo , Trisomía , Cromosomas , Impresión Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA